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Joint Effects in Cross-Lagged Panel Research Using Structural Nested Mean 
Models

Jeroen D. Muldera , Satoshi Usamib and Ellen L. Hamakera 

aUtrecht University; bUniversity of Tokyo 

ABSTRACT 
A popular approach among psychological researchers for investigating causal relationships from panel 
data is cross-lagged panel modeling within the structural equation modeling (SEM) framework. 
However, SEM models are critiqued in the causal inference literature for relying on unnecessarily many 
parametric assumptions, increasing the risk of model misspecification and bias. Instead, the use of 
structural nested mean models (SNMMs) with G-estimation is promoted as an approach that relies on 
fewer assumptions and therefore, in principle, leads to more valid causal conclusions. However, the 
uptake of SNMMs and G-estimation in the psychological literature is lacking, hampered by a discon
nect between the causal inference literature, and the modeling practices that psychological research
ers are familiar with. We bridge this divide by introducing joint effects, linear SNMMs, and 
G-estimation in the context of cross-lagged panel research, and comparing these to cross-lagged panel 
modeling approaches from SEM. A substantive example from psychological practice is used 
throughout.
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1. Introduction

Across a wide range of disciplines, researchers analyze longi
tudinal, observational data to investigate prospective causal 
relationships between variables. In psychology, a significa
tion portion of this kind of research is devoted to lag-1 
cross-lagged effects, which are investigated using cross-lagged 
panel modeling approaches within the framework of struc
tural equation modeling (SEM; e.g., Usami et al., 2019; 
Zyphur et al., 2020a, 2020b; Gische et al., 2021). In contrast, 
in disciplines like epidemiology and biostatistics, research 
more typically focuses on exposure regimes and joint effects. 
These concern effects of a collection of repeatedly-measured 
exposures (i.e., the effect of an X-variable measured at time 
points 1, 2, and 3, etc., combined) on an outcome, and thus 
go beyond the individual, direct paths that are targeted by 
lag-1 cross-lagged effects. While these joint effects can be 
assessed within the SEM framework, they are traditionally 
investigated using a class of formal causal modeling 
approaches that were developed largely by James M. Robins 
(Daniel et al., 2013; Naimi et al., 2016). In this paper, we 
focus on one of these approaches, namely linear structural 
nested mean models (SNMMs) with G-estimation, as it is 
best equipped to analyze continuous exposures (commonly 
of interest in psychological research; Vansteelandt & 
Sjolander, 2016). Two major advantages of linear SNMMs 
with G-estimation compared to cross-lagged panel modeling 

approaches in SEM are (1) SNMMs rely on fewer paramet
ric assumptions, thereby reducing the potential for model 
misspecification; (2) SNMMs with G-estimation can more 
easily accommodate large sets of confounders that one 
would want to adjust for. These advantages lead, in prin
ciple, to more robust causal conclusions (Van der Laan & 
Rose, 2011; VanderWeele, 2012).

However, the interest in joint effects and the uptake of 
(linear) SNMMs with G-estimation in the psychological lit
erature is limited. While there are many introductions to 
this approach for investigating joint effects (e.g., 
Goetghebeur et al., 2020; Hern�an & Robins, 2020; Naimi 
et al., 2016; Petersen & Van der Laan, 2014), these are typic
ally not targeted towards psychological researchers, and pro
vide little to no connection to the modeling practices that 
they are familiar with. Such a disconnect between strands of 
literature hinders researchers from understanding how dif
ferent kinds of causal hypotheses (e.g., those about cross- 
lagged effects or joint effects), and the modeling approaches 
for estimating causal effects, are related. Two important 
contributions to overcoming this disconnect are recently 
published papers by Loh and Ren (2023a, 2023b) who, based 
on the method described by Vansteelandt and Sjolander 
(2016), provide an introduction to linear SNMMs with G- 
estimation, and illustrate how linear SNMMs can be fitted 
to longitudinal data with G-estimation within the structural 
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equation modeling framework. The current paper supple
ments these papers by (1) extending the use of SNMMs to 
continuous predictors, commonly used in psychological 
panel research; (2) providing a more conceptual explanation 
of the concepts that underlie this causal inference approach, 
such as joint effects, controlled direct effects, exposure 
regimes, and the essence of SNMMs and G-estimation; and 
most importantly (3) comparing the use of SNMMs to mod
eling practices SEM users are familiar with, in particular 
cross-lagged panel modeling in SEM. We introduce key con
cepts using a cross-lagged panel design, minimize technical 
details, and present an empirical psychological example 
regarding the sociometer theory in which we investigate the 
effect of satisfaction of one’s social contacts on self-esteem 
(Leary, 2012).

This article is organized as follows. Section 2 provides 
the necessary background: We start with introducing a vis
ual representation of a causal process (also referred to as a 
causal directed acyclic graph, or DAG); explain the differ
ence between cross-lagged effects and joint effects; and end 
with discussing the causal identification assumptions needed 
for a causal interpretation of model estimates. This is fol
lowed, in Section 3, by the introduction and comparison of 
cross-lagged panel modeling approaches using SEM versus 
SNMMs using G-estimation. In Section 4, we illustrate both 
approaches for the investigation of joint effects with empir
ical data. The discussion in Section 5 connects our treat
ment of joint effects and SNMMs to other modeling topics 
that are prominent in the psychological literature on model
ing longitudinal data, such as the decomposition of observed 
variance into within- and between-person variance, and the 
inclusion of lag-2 effects to control for confounding. 
Annotated R code for the empirical analyses in this paper 
can be found in the online supplementary materials at 
https://jeroendmulder.github.io/joint-effects-using-SNMM.

2. Background

This section starts with the introduction of causal DAGs 
and the empirical psychological example used throughout 
this paper. Subsequently, we discuss the different causal 
hypotheses that are typically the focus in different disci
plines. We end with a discussion of causal identification 
assumptions; while these are not the focus of this article, 
they are needed for a causal interpretation of statistical 
results, regardless of the kind of causal hypothesis of inter
est, or the modeling approach that was taken.

2.1. A Causal DAG for Satisfaction with Social Contacts 
and Self-Esteem

Causal DAGs are graphical tools that can be used to repre
sent the causal structure of empirical phenomena that 
researchers want to study. It consists of a set of variables 
(nodes) and one-headed arrows representing the causal 
dependencies between them (edges; Pearl, 2009). All varia
bles that are believed to play a role in the empirical phe
nomenon should be included in the causal DAG. Thus, in 

addition to exposures1 and outcomes, causal DAGs usually 
also include a set of time-varying and time-invariant covari
ates (both observed and unobserved), and their causal con
nections (Hamaker et al., 2020; Pearl, 2009; Rohrer, 2018). 
These causal DAGs appear similar to path diagrams in the 
SEM framework, but there are three important differences: 
Causal DAGs (1) do not necessarily imply linear relation
ships, that is, they represent dependencies between variables, 
without assuming a specific functional form of this depend
ency; (2) do not make any assumptions about the distribu
tion underlying this system of variables; and (3) do not 
include two-headed arrows representing unexplained cova
riances between variables (Pearl, 2009).

Suppose we are interested in assessing causal relations 
between satisfaction with one’s social contacts (SSC) and self- 
esteem (SE), specifically in young adults who just moved out 
of their parents’ house for the first time. Let Xt be a meas
ure of SSC and Yt be a measure of SE, both measured at 
time point t. Let Lt be a time-varying multivariate random 
variable consisting of multiple covariates at time point t, for 
example alcohol and drug use, and let C be a time-invariant 
multivariate random variable consisting of baseline covari
ates such as gender, age, and personality traits like neuroti
cism (Boden et al., 2008). We can represent the causal 
structure underlying these variables over time in a causal 
DAG, as shown in Figure 1. It contains four repeated meas
ures of SSC and SE, the time-varying variable Lt, two (sets 
of) baseline variables C and U, and the dependencies 
between these variables over time. The baseline covariates in 
C influence all variables at future time points; to avoid clut
ter, not every arrow is drawn in the DAG. The time- 
invariant variable U represents covariates that exist before 
t¼ 1, and that only have direct effects on X, Y, and L at the 
first time point. The existence of such a variable is often 
assumed in panel data, as measurements of X, Y, and L are 
obtained at random points in time in an ongoing process: U 
can then represent unobserved realisations of X, Y, and L 
before the start of measurement that results in covariances 
between X1, Y1, and L1. This specific causal DAG represents 
a structure where time-varying variables influence all other 
time-varying variables at the next time point, but this 

Figure 1.  A causal DAG, representing how a time-invariant variable C, and 
time-varying variables X, Y, and L are causally related to each other across four 
repeated measurements. C is causally related to all other variables in the model, 
although not all arrows are included in the DAG to prevent clutter.

1We use the term “exposure” to refer to the causal variable of interest, and 
that we might intervene on if we conclude it causally affects the outcome. In 
intervention studies, it is typically referred to as the treatment.
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influence does not extend beyond lag 1. Note that such lag- 
1 processes are also the predominant causal structure that is 
assumed in psychological cross-lagged panel research 
(Usami et al., 2019).

While working with the causal DAG in Figure 1, we 
make the implicit assumption that it correctly represents the 
underlying causal structure between SSC, SE, and the time- 
varying and time-invariant covariates (Imbens, 2019). 
Arguably, the lag-1 process as encoded in the DAG of 
Figure 1 is an oversimplification, as empirical processes 
might include effects that extend beyond a single time inter
val (i.e., lag-2 and longer; Little, 2013, p. 203). Additionally, 
lag-0 effects can be added to the DAG to represent contem
poraneous effects. Such effects are commonly assumed in 
longitudinal biomedical research, for example when the 
decision to give an individual a treatment X at a particular 
time point depends on a range of previous covariates, as 
well as current values of covariates such as blood results. 
Recently, Muth�en and Asparouhov (2022a) argued that lag- 
0 effects may also be realistic in psychological research 
when data are collected with long time intervals and meas
urements referring to past experiences (e.g., when Xt refers 
to a construct in the past thirty days, whereas Yt refers to a 
construct “at this moment”). As the omission of such lag-0 
or lag-2 (and longer) effects from the causal DAG is a 
stronger assumption than their inclusion (i.e., it amounts to 
constraining these paths to zero; Bollen & Pearl, 2013), it is 
advisable to include these effects whenever there is doubt 
about their existence, and to adjust for them in statistical 
analyses. For didactical reasons, we start with the simplified 
DAG in Figure 1, but in Section 4, we discuss in more detail 
the addition of lag-0 and lag-2 causal dependencies to the 
DAG, and how this impacts the cross-lagged panel modeling 
and SNMM approaches.

2.2. Cross-Lagged Effects and Joint Effects

Figure 2(a) visualizes cross-lagged effects in the causal DAG 
of Figure 1. Characteristically, cross-lagged effects are bidir
ectional, implying that SSC and SE take on the role of both 
presumed cause and outcome: At the first wave SSC and SE 
are presumed causes, at the final wave SSC and SE are out
comes, and at the intermediate waves SSC and SE are both. 
In psychological research oftentimes each dependency (i.e., 
arrow) independently is a target of inference. That is, when 
interested in cross-lagged effects and assuming the causal 
structure of Figure 1, we target six causal effects: Three 
cross-lagged effects from SSC to subsequent SE, and three 
cross-lagged effects from SE to subsequent SSC. Although 
the focus is typically only on lag-1 relationships, in the epi
demiological and biostatistical literature, effects of exposure 
regimes are more commonly investigated (also sometimes 
referred to as exposure sequences or exposure history; 
Wallace et al., 2017).

Regimes can be regarded as treatment strategies that 
span multiple time points. An example is a regime in which 
individuals are made to experience their highest possible 
satisfaction with their social contacts at each of the four 

measurement occasions. Suppose that “highest possible sat
isfaction” is denoted by a score of 5 on our SSC-scale, this 
regime could then be represented as fx1 ¼ 5, x2 ¼ 5, x3 ¼

5, x4 ¼ 5g: Another example would be a regime in which 
the individuals are made to be moderately satisfied at the 
first two occasions (corresponding to a score of 2), and to 
be completely unsatisfied at the third and fourth occasion 
(corresponding to a score of 0), fx1 ¼ 2, x2 ¼ 2, x3 ¼ 0, x4 ¼

0g: For simplicity of notation, we denote such regimes as 
f5, 5, 5, 5g and f2, 2, 0, 0g, respectively. Contrasting end-of- 
study outcomes that follow from two different exposure 
regimes then allows researchers to assess the average causal 
effect (ACE) of being exposed to one specific regime com
pared to another specific regime. Such contrasts are also 
known as joint effects, where “joint” refers to the exposures 
at multiple time points combined.

For continuous exposures and the constructs typically of 
interest in psychological research, it might be difficult to 
conceive of a policy or intervention with which individuals 
can be made to experience exactly a particular level of satis
faction with their social contacts. Therefore, it might be 
more interesting to look at the joint effect of increasing an 
individual’s satisfaction by one unit compared to the level of 
satisfaction that individuals would naturally take on. This 
joint effect can represented as a contrast of end-of-study 
outcomes following the fx1, x2, x3, x4g regime versus the 
fx1 þ 1, x2 þ 1, x3 þ 1, x4 þ 1g regime, where the former 
represents the natural satisfaction of individuals, and the lat
ter the natural satisfaction of individuals increased by one 
unit.

Such joint effects can be decomposed into multiple con
trolled direct effects (CDEs), specifically (1) the effect of X1 
on end-of-study Y4, which does not through later versions 
of X; (2) the effect of X2 on end-of-study Y4 which does not 
go through later versions of X; and (3) the effect of X3 on 
end-of-study Y4 which does not go through later X (Figures 
2(b–d), respectively; Daniel et al., 2013). This decomposition 
is useful later for understanding how SNMMs are build up. 
For researchers familiar with mediation analysis in SEM, the 
term “controlled direct effect” might be confusing termin
ology in this context as the intermediate process would be 
regarded as a set of indirect effects, rather than direct. For 
SNMMs, however, the term “controlled” in CDE refers to 
the fact that values of later SSC are held constant at a par
ticular value (or set of values), whereas the term “direct” 
refers to the fact that the underlying intermediate process 
by which SSC at a particular time point affects end-of-study 
SE is not modeled, but that rather a single estimate summa
rizing this intermediate process is obtained (Tompsett et al., 
2022; Wallace et al., 2017). To accentuate the fact that for 
CDEs in the context of SNMMs the intermediate process is 
not our target of inference, the intermediate dependencies 
for the CDEs of X1 and X2 in Figures 2(b,c) appear as dot
ted arrows.

Let us zoom in on the CDE of X1 on the end-of-study 
outcome Y4 in Figure 2(b). This can alternatively be repre
sented as the difference between the outcome following the 
regime fx1 þ 1, x2, x3g and the outcome following the 
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regime fx1, x2, x3g—i.e., the effect of a one-point increase in 
SSC at the first measurement occasion on end-of-study SE, 
while keeping future levels of SSC constant at values x2 and 
x3 for everyone. These values can be anything, but for inter
pretational reasons, researchers might set x2 and x3 to the 
mean SSC score, or, as commonly done when exposure is 
binary, to zero. Even more generally, the CDE can be repre
sented as a contrast of outcomes following the regimes 
fx�1, x2, x3g versus fx1, x2, x3g to represent the effect of an 
arbitrary increase of SSC at the first measurement occasion. 
We ignore X4 here as, based on the causal DAG in Figure 1, 
it has no causal effect on the end-of-study outcome. 
Similarly, the CDE of X2 can be regarded as a contrast of 
outcomes following the regimes fx1, x�2, x3g versus 
fx1, x2, x3g: In this contrast, we control for exposure before 
time point 2 (X1 ¼ x1), and future exposure (X3 ¼ x3). 
Finally, the CDE of X3 can be represented as a contrast of 
fx1, x2, x�3g and fx1, x2, x3g: Finally, for this particular DAG, 
the CDE of X3 and the cross-lagged effect of X3 concern the 
same dependency in the causal DAG, X3 ! Y4: However, 
note that this (causal) equivalence does not hold generally 
(e.g., when lag-0 effects of the time-varying covariate to the 
outcome are added to the causal DAG).

2.3. Conceptual Differences Between Cross-Lagged 
Effects and Joint Effects

There are multiple conceptual differences between cross- 
lagged effects that tend to be the focus in psychological 
research, and joint effects that are more typically focused on 
biomedical research. These differences not only affect the 
interpretation of the effects, but also have statistical ramifi
cations. First, research questions about cross-lagged effects 
in a psychological context are typically bidirectional in 

nature: Researchers investigate if effects between variables 
go from X to Y, from Y to X, and if both processes are at 
work, which process is “causally dominant” (Rogosa, 1980). 
Instead, investigations of joint effects in the literature are 
predominately unidirectional, with researchers deciding a 
priori which specific causal process (i.e., which “causal 
direction”) is studied. Nonetheless, joint effects can also be 
studied in both directions (e.g., Li et al., 2016), but this 
would be done as a seperate analysis.

Second, the role variables take on in a causal process 
depends on the causal effect that is targeted. For cross- 
lagged effects, six variables are exposures, namely X1, Y1, X2, 
Y2, X3, and Y3, and six variables are outcomes, namely X2, 
Y2, X3, Y3, X4, and Y4. Instead, for joint effects, the exposure 
is a single variable measured at multiple time points, Xt. 
Moreover, the majority of the studies investigating joint 
effects concern a single outcome, usually measured at the 
end of a study (e.g., Y4). However, when an outcome is 
measured repeatedly (as done in a cross-lagged panel 
design), SNMMs can be extended to include time-varying 
outcomes as well (Vansteelandt & Sjolander, 2016).

The role of time-varying covariates also changes. For 
example, the cross-lagged effect X3 ! Y4 is confounded by 
L2 via the paths X3  L2 ! L3 ! Y4 and X3  L2 ! Y3 !

Y4: This implies that the time-varying covariates at time 
point 2 should be controlled for in a statistical analysis. In 
contrast, for the joint effect of X, L2 is both a confounder 
and a mediator: It is a confounder for the CDE of X3 (i.e., 
it is a common cause on the paths X3  L2 ! Y3 ! Y4 and 
X3  L2 ! L3 ! Y4), but a mediator for the CDE of X1 
(it lies on the paths X1 ! L2 ! L3 ! Y4 and 
X1 ! L2 ! Y3 ! Y4). Such a “double role” complicates 
statistical analyses, as attempts to estimate the joint effect 
with standard regression methods—for example, a linear 

Figure 2. Representation of the causal dependencies that are targeted by research questions on reciprocal, cross-lagged effects, and joint effects. (a) Reciprocal, 
cross-lagged effects. (b) Controlled direct effect of X1 on Y4. (c) Controlled direct effect of X2 on Y4. (d) Controlled direct effect of X3 on Y4.
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regression of Y4 on all exposures X1, X2, X3, and all con
founders simultaneously—is incorrect: Controlling for L2 
leads to overcontrol bias for the CDE of X1, whereas not 
controlling for L2 leads to confounder bias in the CDE of 
X3 (VanderWeele et al., 2016). In the causal inference litera
ture, this problem is referred to as exposure-confounder feed
back, and the causal inference approaches by Robins have 
been developed specifically to tackle this problem (Robins & 
Greenland, 2000). In Section 3, we discuss how exposure- 
confounder feedback is dealt with in both cross-lagged panel 
models, and SNMMs with G-estimation.

Third, cross-lagged effects and joint effects relate to dif
ferent time lags at which the causal process operates. In 
general, estimates of causal effects depend critically on the 
size of the time interval between subsequent measures 
(Gollob & Reichardt, 1987; Kuiper & Ryan, 2018; Voelkle 
et al., 2012). Therefore, estimates of cross-lagged effects are 
interpreted as causal effects that take one time-lag to 
materialize. For our empirical example, we use data from 
the Longitudinal Internet studies for the Social Sciences 
(LISS) in which measurements were taken on a yearly basis 
(more information about the LISS panel can be found at 
https://www.lissdata.nl; Scherpenzeel, 2018). Hence, an 
estimate of the cross-lagged effect of SSC on SE is the 
expected change in SE one year later for a one-unit 
increase in SSC. In contrast, the joint effect is a combin
ation of causal effects at varying time-lags: The CDE of X1 
relates to three years, the CDE of X2 relates to two years, 
and the CDE of X3 relates to one year. It can thus be 
regarded as a mix of shorter- and longer-term effects, 
describing the effect of repeated yearly interventions on 
SSC across a three-year period.

2.4. Causal identification assumptions

When estimating the effects discussed above from empirical 
data, a causal interpretation thereof relies critically on both 
causal identification assumptions and parametric assump
tions. While the focus of this article is on a comparison of 
the parametric assumptions that a CLPM in SEM and an 
SNMM with G-estimation make, causal identification 
assumptions are fundamental to a causal interpretation of 
estimates. Introductions to causal identification assumptions 
are given by Morgan and Winship (2014); Imbens and 
Rubin (2015). Therefore, we briefly discuss two central 
causal identification assumptions here, namely conditional 
exchangeability and consistency. The plausibility of these 
assumptions for our empirical example is elaborated upon 
in the Discussion section; for the purpose of this article, we 
continue as if these assumptions hold.

Both consistency and exchangeability concern potential 
outcomes and observed variables. A potential outcome, 
denoted by Yx, is an outcome for a particular individual at a 
particular point in time that would be observed if the indi
vidual had exposure X¼ x (Rubin, 1974; Splawa-Neyman 
et al., 1990). For example, suppose that we are looking at 
SSC only at time point 3; then Y5 would be the end-of-study 
SE if an individual had an SSC score of five at time point 3 

(i.e., x3 ¼ 5Þ, and Y1 would be the end-of-study SE if an 
individual had an SSC score of one (i.e., x3 ¼ 1Þ: In reality, 
an individual has only a single SSC score at time point 3, 
and thus we can only observe one potential outcome (the 
factual) while the others remain unknown (the counterfac
tuals). In similar vein, we can have potential outcomes for 
exposure regimes, Yfx1, x2, x3g, which is the outcome for a 
particular individual that would be observed if the individ
ual had the exposure regime fx1, x2, x3g: Potential outcomes 
are the fundamental building blocks of much of the causal 
inference literature as they are used to define in great detail 
which particular (hypothesized) causal effects are of interest 
for a study. In fact, we have already implicitly used these 
above to explain joint effects as differences between end-of- 
study outcomes that follow from two different regimes (i.e., 
as a contrast of two potential outcomes). What causal iden
tification assumptions do, is link the causal effect of interest 
(in terms of a contrast between two specifically defined 
potential outcomes), to the data from which we attempt to 
estimate this effect.

The consistency assumption states that the potential out
comes can be tied to observed variables, meaning that, for 
example, the potential outcome Yf5, 5, 5g is the same as the 
observed Y for individuals with exposure regime {5, 5, 5} 
(Hern�an & Robins, 2020). In practice, this assumption 
implies that these constructs are well-defined, including 
being specific about the (hypothetical) intervention that 
could set an individual’s exposure regime to {5, 5, 5} (even 
if the intervention is impractical, unethical, or impossible to 
carry out; Robins & Greenland, 2000). For our example, we 
might consider changing an individual’s SSC by having par
ticipants partake in therapy, or perhaps we can imagine 
implementing a public a policy in which every individual 
gets an amount of money each month that they can spend 
on social events with others. The consistency assumption 
also highlights a fundamental challenge in psychological 
research, which is conceiving of practical interventions that 
change only the exposure of interest (Eronen, 2020). If mul
tiple versions of an intervention on SSC have different 
effects, then observed outcomes might not necessarily equal 
the potential outcomes, and it remains unclear how numer
ical estimates of “the effect” relate to the “the effect” as 
formulated in the research question (i.e., we than have an 
“ill-defined” causal effect; Hern�an, 2016; Pearl, 2018).

The assumption of (conditional) exchangeability states that 
the potential outcomes are independent from their observed 
value on the exposure X (conditional on a set of covariates).2

It is a condition that is reasonable in the context of a 
randomized controlled trial, but is likely to be violated to 
some degree in nonexperimental settings. To make the 
assumption plausible, researchers condition on covariates that 
confound the targeted effect. The set of covariates to be 
adjusted for can be determined using the d-separation rules 

2Researchers from other scientific disciplines might be more familiar with 
closely-related assumptions such unconfounded assignment, unconfoundedness, 
no unmeasured confounding, ignorability, (conditional) independence of 
treatment and potential outcomes, and exogeneity (cf. Angrist & Pischke, 2009; 
Hern�an & Robins, 2020; Imbens & Rubin, 2015).
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by Pearl (1995).3 In practice, the major challenge is making 
sure that we have measured enough covariates to adjust for 
the biasing effect of confounders. Unfortunately, this cannot 
be tested with data, but should be evaluated by the researcher 
based on theory, existing literature, and/or expert opinion 
(Goetghebeur et al., 2020; Petersen & Van der Laan, 2014). 
Note that the assumption of exchangeability merely concerns 
which confounders should be accounted for, not how they 
should be accounted for. The latter concerns the act of esti
mation rather than identification, and which is where SEMs 
and SNMMs with G-estimation are inherently different.

2.5. Conclusion

Traditionally, psychological research has typically focused on 
cross-lagged effects, whereas biomedical research was more 
commonly concerned with joint effects. However, there is no 
inherent reason why joint effects would not be interesting for 
psychology. For our empirical example, a research question 
concerning a joint effect could be: “For Dutch young adults 
who have moved out of their parents’ house in the past year, 
what is the joint effect of increasing their satisfaction with one’s 
social contacts for three years on self-esteem three years after 
moving out, compared to the satisfaction with one’s social con
tacts that they would naturally have during these three years?” 
Again, a big challenge here is making this research question 
well-defined by conceiving of an intervention by which we can 
change an individuals’ satisfaction with social contacts. For the 
purpose of this study, we continue as if the consistency 
assumption holds, and discuss how our research question can 
be investigated using several estimation approaches.

3. Estimation approaches

We focus on two estimation approaches: The use of cross-lagged 
panel models (CLPMs) within the framework of structural equa
tion modeling, and the use of a SNMM with G-estimation. We 
specifically discuss the parametric assumptions underlying 
CLPMs and SNMMs: Which dependencies of a causal DAG do 
researchers need to correctly specify the functional form of, and 
how are differences herein across approaches (dis)advantageous 
when the goal is to estimate the targeted causal effect? To help 
clarify some key characteristics of SNMMs with G-estimation, 
we also briefly discuss a repeated multiple regression approach 
for estimating joint effects.

3.1. CLPMs in the Structural Equation Modeling 
Framework

One of the most popular classes of structural equation mod
els in psychology for assessing prospective causal relations 
between variables is CLPMs (Usami et al., 2019; Zyphur 
et al., 2020a; 2020b). In this section, we outline some of the 
defining characteristics of this specific structural equation 
modeling approach, and subsequently discuss its advantages 
and disadvantages.

3.1.1. The Basic Idea
CLPMs typically attempt to model the entire causal struc
ture of the process under study using linear relations. In a 
longitudinal context, this includes specifying how (1) the 
outcome depends on previous exposure and covariates; (2) 
the time-varying exposure depends on previous exposures 
and covariates; and (3) the covariates depend on previous 
exposures and covariates. For our example, this modeling 
approach implies that the causal DAG in Figure 1 would be 
interpreted as a path diagram, with all individual dependen
cies (arrows) specified. In practice, covariances between the 
residuals at the same wave are usually added to the model 
to capture the direct effects of unobserved time-varying con
founders whose effects are limited to a single time point, 
and who themselves show no dependencies over time. Such 
confounding variables are not assumed in the causal DAG 
of Figure 1, which implies that estimation of residual cova
riances would be redundant.

In practice the dependencies in CLPMs in SEM are typic
ally assumed to be linear; nonlinear relationships are rarely 
considered (although, in principle, it is possible to specify 
them, for example Harring & Zou, 2023; Mulder et al., 
2024). If the assumed causal structure in the causal DAG is 
correct, and all parametric assumptions underlying the 
CLPM are true (i.e., all effects are linear, residuals are nor
mally distributed), then the CLPM results in unbiased esti
mates of each path, and estimates of cross-lagged effects can 
be read off directly as regression coefficients of the bold
faced paths in Figure 2(a). The CDEs can then be obtained 
as relatively simple linear combinations of parameter esti
mates on the causal paths of interest. For example, using 
the path tracing rules by Wright (1934), the CDE of X1 is a 
combination of the regression coefficients on the paths 
X1 ! L2 ! L3 ! Y4; X1 ! L2 ! Y3 ! Y4; X1 ! Y2 !

L3 ! Y4; and X1 ! Y2 ! Y3 ! Y4: This CDE is thus the 
effect of X1 on Y4 that is mediated by all covariates in L and 
previous Y, and does not go through future X’s. The same 
principle applies for the specification of the CDEs of X2 
and X3.

3.1.2. Advantages
One advantage of this estimation approach is that the prob
lem of exposure-confounder feedback is not applicable: By 
modeling the entire (assumed) data generating mechanism, 
the researcher has control over which paths to combine to 
get estimates of the effect of interest. Furthermore, reliance 
on (many) parametric assumptions results in efficient use of 
the data, leading to relatively small standard errors. 
Secondary advantages are derived from the structural equa
tion modeling framework that CLPMs are specified in. For 
example, a major advantage is that SEMs can include latent 
variables, which can be used to study latent constructs using 
multiple indicators, to account for measurement error and 
unobserved heterogeneity in the constructs, among other 
things (Kenny & Zautra, 1995; Mulder & Hamaker, 2021; 
Usami, 2021). Furthermore, many structural equation mod
eling software packages can handle various missing data pat
terns through the use of full information maximum 

3We do not provide an introduction to these graphical rules here, but the 
interested reader is referred to Rohrer (2018) and Pearl (2009).

6 MULDER, USAMI, HAMAKER



likelihood (FIML; Arbuckle, 1996). This is convenient, as 
missing data are the norm rather than the exception in non
experimental longitudinal settings (Van Buuren, 2018, p. 7).

3.1.3. Disadvantages
From a causal inference point-of-view there is the concern 
that by parameterizing the entire causal process as a linear 
process, there is increased risk of model misspecification 
and consequently bias: Parametric misspecication of any 
dependency in the CLPM—such as wrongly assuming a 
causal effect to be linear, whereas, in fact, it is nonlinear— 
can lead to bias that propagates to other parts of the model 
as well (cf. Mulder et al., 2024; VanderWeele, 2012). In fact, 
with the CLPM approach outlined above, parts of the causal 
DAG are modeled that are not necessary for identification 
and estimation of targeted causal effects. Take the effect 
X3 ! Y4 for example, which is of interest as both a cross- 
lagged effect, and as the CDE of X3. Obtaining an unbiased 
estimate requires, amongst other things, correctly adjusting 
for covariates that could confound this relationship (i.e., the 
conditional exchangeability assumption). Based on the 
causal DAG in Figure 1 and using the d-separation rules, it 
can be shown that adjustment for covariates L3, Y3, and C is 
enough to block all noncausal pathways between X3 and Y4: 
It does not require modeling how these covariates them
selves depend on previous covariates. However, since 
CLPMs are concerned with modeling a data generating 
mechanism in its entirety, the causal structure of these cova
riates is typically modeled as well. This is often required to 
achieve desirable levels of model fit for the model as a 
whole; yet, it is redundant if the researcher is exclusively 
interested in obtaining unbiased estimates of specific causal 
dependencies. Similar arguments apply when estimating 
other cross-lagged effects or CDEs. Van der Laan and Rose 
(2011) point out that such unnecessary modeling increases 
the potential for model misspecification, and ultimately 
results in bias for the estimates of the targeted causal effects 
(see also Naimi et al., 2016). This point has been made 
before in the context of CLPMs (Allison et al., 2017; Bollen, 
1989), but does not appear to have been picked up in cur
rent structural equation modeling practices.

A second disadvantage of CLPM approaches in SEM is 
that the incorporation of multiple time-varying covariates 
can quickly become unwieldy. This also applies if bidirec
tional lag-0, or lag-2 effects (or further) are to be included, 
or if quadratic terms are added to the model to specify non
linear dependencies (Muth�en & Asparouhov, 2022a). Such 
extensions (and many others) can dramatically increase the 
number of parameters that need to be estimated, and can 
steeply increase the size of the covariance matrix that needs 
to be modeled, thereby requiring increasingly large sample 
sizes to find a stable solution for the parameter estimates. 
For our example, if we were to interpret the causal DAG in 
Figure 1 as a path diagram, it would include (at least, 
excluding covariances, and residual covariances) 65 parame
ters, that is: 39 regression parameters, 1 variance, and 12 
residual variances, 1 mean, and 12 intercepts. The inclusion 
of 1 additional time-varying covariate with a similar lag-1 

causal structure adds 21 regression coefficients, 4 residual 
variances, and 4 intercepts to the model. As psychological 
mechanisms can involve a plethora of time-varying covari
ates that researchers (should) want to adjust for, attempts to 
model the entire causal system can quickly become practic
ally prohibitive.

Third, including categorical variables as covariates in 
CLPMs is challenging, as the estimated regression coeffi
cients are then on different scales, making it difficult to 
combine coefficients to compute CDEs. Suppose that a 
time-varying covariate in L is categorical, for example drug 
use. This implies that regressions of drug use on other vari
ables concern logistic or probit regressions, resulting in 
logistic (e.g., odds ratios) or probit regression coefficients, 
respectively (Muth�en et al., 2016). These then need to be 
combined with linear regression coefficients from other 
paths in the SEM, for instance L3 ! Y4, to compute the 
CDEs of interest, which requires specific computational 
methods. Such computations are possible for relatively sim
ple situations with a single categorical time-varying covari
ate, but this process becomes increasingly involved when the 
number of time-varying categorical covariates increases (for 
more details, see Muth�en et al., 2016; Nguyen et al., 2016).

3.2. Repeated multiple regression

In the causal inference literature, estimation approaches are 
usually presented in the context of exposure-confounder 
feedback (VanderWeele, 2021). In the presence of this prob
lem, standard regression methods that attempt to simultan
eously estimate all CDEs that make up a particular joint 
treatment effect—for example, by regressing the outcome on 
all exposures and covariates—are inadequate, leading to 
biased estimates of joint effects. However, it is possible to 
use standard regression methods in a “repeated” manner: 
Multiple standard regression models are then fitted, one for 
the estimation of each CDE separately. This makes it pos
sible to work with distinct sets of covariates to adjust for 
confounding, thereby preventing the problem of exposure- 
confounder feedback. Although this exact method is not 
commonly used in practice, we explore it here as a first step 
towards the explanation of SNMMs with G-estimation.

Figure 3 illustrates the three regression models that must 
be specified to estimate the joint effect of X on end-of-study 
Y4 (assuming the causal DAG in Figure 1). We can deter
mine which sets of covariates to condition on from the 
causal DAG in Figure 1 and using the d-separation rules by 
Pearl (1995). For this example, the smallest adjustment set 
for closing all back-door paths from X3 to Y4, is the set of 
variables L3, Y3, and C, as shown in Figure 3(a). Under the 
causal identification assumptions (Section 2.4) and the para
metric assumptions of this regression model (i.e., the func
tional form of the relationship between the covariates in L3 
and the outcome is correct, and there is no interaction 
between exposure and previous exposures and confounders), 
the regression coefficient of X3 obtained with this regression 
model is an unbiased estimate of the CDE of X3 on Y4. 
Alternatively, the regression model can be used akin to the 
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“regression estimation” method described by Schafer and 
Kang (2008), which includes making predictions of individ
uals’ potential outcomes under two values of X3 (and using 
observed values on all the covariates), and then compute the 
CDE of the exposure X3 as the difference between the aver
age outcomes under both X3-values.

To estimate the CDE of X2, we need to fit a second 
regression model, where this time we adjust for the set L2, 
Y2, C, and X3 to control for confounding, and as shown in 
Figure 3(b). Adjustment for X3 is required to block the 
effect of X2 on Y4 that goes through the future exposure (by 
definition of a joint effect, this is not allowed). In this 
regression model, we can block the effect of X2 on Y4 that 
goes through X3 simply by including X3 as an additional 
covariate in the model. Similar to the CDE of X3 we can 
interpret the regression coefficient of X2 is an unbiased esti
mate of the CDE of X2 (given the causal identification 
assumptions, and the parametric assumptions of the speci
fied regression model), or use this model for regression esti
mation to obtain an estimate of the causal effect.

Finally, the procedure for estimation of CDE of X1 is 
similar, but now using the regression model illustrated in 
Figure 3(c). Here we include L1, Y1, and C as covariates to 
control for confounding by C and U. Future exposures X2 
and X3 are included in the regression model to block the 
effect of X1 on Y4 through X2 and X3.

Compared to a CLPM, the regression models in this 
repeated procedure rely on the specification of much fewer 
dependencies to get unbiased estimates of the CDEs. 
Specifically, no model is specified for time-varying covari
ates L and Y (before the end-of-study), and the CDEs are 
specified directly rather than indirectly through the individ
ual dependencies underlying them. For this reason, this 
approach has a lower risk of parametric model misspecifica
tion. Furthermore, these regression models can also be fitted 
within the SEM framework. As such, researchers can com
bine advantages of SEM techniques (e.g., the inclusion of 
latent variables, the use of FIML for missing data handling), 
with the advantages of this sequential regression approach.

3.3. Linear SNMMs Using G-Estimation

SNMMs with G-estimation are described as a flexible and 
robust method for investigating joint effects in the presence 
of exposure-confounder feedback (Vansteelandt & Joffe, 
2014). It shows resemblance with the repeated multiple 
regression approach discussed above, in that the CDEs are 
estimated separately as well, and that G-estimation of the 
CDEs of X2 and X1 requires adjustment for future expo
sures. However, the use of SNMMs with G-estimation 
adjusts for future exposures differently; additionally requires 
modeling the exposure; and can be doubly-robust, implying 
that estimates of causal effects are consistent, and thus con
verge to the true value as sample size increases, even if part 
of the model is misspecified.4 This latter characteristic is 
generally considered appealing from a causal inference 
point-of-view (cf., Kang & Schafer, 2007; Schafer & Kang, 
2008). However, what makes this approach challenging for 
psychological researchers to learn about is that (1) its use in 
the literature is described for heterogeneous research prob
lems, for instance for assessing joint effects, mediation, or 
survival rates; (2) there exist multiple different G-estimation 
methods for fitting SNMMs to data; (3) these different 
methods each have different features that make them (dis)
advantageous for specific research settings; and (4) there is 
little comprehensive software that has implemented all these 
methods. Therefore, our goal in this subsection is to provide 
the reader with a basic understanding of what an SNMM is, 
what the essence of G-estimation is, and what the (dis)ad
vantages of this approach are compared to CLPMs. We 
focus specifically on the G-estimation method for linear 
SNMMs as described by Vansteelandt and Sjolander (2016) 
and Loh and Ren (2023a), with data in wide-format.

Figure 3. Overview of the regression models that need to be correctly specified 
for estimating the joint effect of X on Y using standard regression methods. (a) 
Regression model for estimating CDE of X3 on Y4. (b) Regression model for esti
mating CDE of X2 on Y4. (c) Regression model for estimating CDE of X1 on Y4.

4Note that the term consistency here refers to a statistical property of an 
estimator, and is different from the causal identification assumptions of 
consistency discussed in Section 2.4.
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3.3.1. The Basic Idea
Joint effects are a collection of CDEs (Daniel et al., 2013), 
and CDEs can be represented as contrasts of end-of-study 
outcomes that follow from two different regimes (Section 
2.2). An SNMM is a model for these contrasts, where each 
CDE is equated to a causal parameter wt. G-estimation is a 
sequential process that estimates the wt’s, starting with the 
last CDE, and then working backwards through time.

The joint effect can be represented as a comparison of 
the regimes fx1, x2, x3g with fx1 þ 1, x2 þ 1, x3 þ 1g:
We start with the CDE of X3 on Y4, which can be parame
terized as

EðYfx1, x2, x3þ1g
4 − Yfx1, x2, x3g

4 jC ¼ c, X2 ¼ x2, L2 ¼ l2, Y2 ¼ y2Þ ¼ w3:

(1) 

The term on the left-hand side is the difference in the 
expected outcome of end-of-study Y4 if all individuals fol
lowed the regime fx1, x2, x3 þ 1g versus if all followed the 
regime fx1, x2, x3g; hence, the only difference is in the 
exposure at the third time point. We condition on covari
ates that are sufficient to block all noncausal paths between 
X3 and Y4 based on the causal DAG in Figure 1. Rather 
than conditioning on the smallest adjustment set used in 
the repeated regression method discussed above, we decided 
to condition on the covariates C, X2, L2, and Y2. The reason 
for this is that in fitting the model (as discussed later in this 
Section), we need to predict the exposure X3, and based on 
the causal DAG in Figure 1, it makes more sense to do this 
with variables prior to X3 rather than variables measured 
contemporaneously with X3. The causal effect is equated to 
the parameter w3. For the purpose of this paper, we start 
with a basic linear SNMM here (i.e., there are no interaction 
terms implying an absence of moderation, and no quadratic 
terms), although Equation (1) can be extended with interac
tions between exposure and (time-varying) covariates.

To estimate w3, we make use of G-estimation, which is 
any estimation procedure that can be derived from the con
ditional exchangeability assumption (Vansteelandt & Joffe, 
2014). As discussed in Subsection 2.4, conditional exchange
ability states that the potential outcomes are independent 
from observed exposure conditional on covariates. 
Assuming only linear relationships, this independence 
assumption can be written as

CovðYfx1, x2, x�3g
4 , X3 j C, X2, L2, Y2Þ ¼ 0, (2) 

where Yfx1, x2, x�3g represents the potential outcome for the 
treatment regimes with x1 and x2 set to their actual observed 
values, while x�3 is set to a specific value, for instance zero, 
for all people.

Equation (2) may at first appear unrelated to our param
eter of interest w3, and also rather impractical, as the poten
tial outcome term Yfx1, x2, x�3g is not actually observed (Naimi 
et al., 2016). However, through the SNMM, we can connect 
w3 and Equation (2) (Vansteelandt & Joffe, 2014). To see 
this, suppose we want to compute the expected end-of-study 
SE score for each individual if their SSC score at the third 
wave had been set zero, that is, Yfx1, x2, 0g; however, we have 
observed Yfx1, x2, x3g: Recall that w3 is the difference in the 

(expected) potential outcomes, when there is a one unit dif
ference in x3 (when going from the observed x3 to x3 þ 1). 
Hence, when going from the actual observed x3 to x�3 ¼ 0, 
the (expected) change in the potential outcomes is 
Yfx1, x2, x3g

4 − Yfx1, x2, 0g
4 ¼ w3x3: Since, under consistency, 

Yfx1, x2, x3g
4 ¼ Y4 (i.e., our observed end-of-study outcome), 

this implies we can write

Yfx1, x2, 0g
4 ¼ Y4 − w3X3: (3) 

Plugging Equation (3) into Equation (2) then leads to

CovðY4 − w3X3, X3 j C, X2, L2, Y2Þ ¼ 0: (4) 

This shows the essence of G-estimation: Finding a value 
for w3 such that Equation (4) holds.5

3.3.2. G-estimation for Linear SNMMs by Vansteelandt 
and Sjolander
Multiple G-estimation methods have been developed for 
estimating w3. For example, Hern�an and Robins (2020) 
describe a grid search, simply plugging in a range of values 
for w3 until you find the value such that Equation (2) holds. 
Vansteelandt and Sjolander (2016), however, describe a pro
cedure (i.e., a closed-form estimator) for linear SNMMs that 
relies on fitting regression models for both the exposures 
and the outcome; a model for the covariates is not required. 
How this procedure can be derived from the conditional 
exchangeability assumption is shown in their appendix.

This method consists of three steps. First, a regression 
model for the exposure X3 is specified, conditional on a set 
of covariates for blocking all noncausal paths, X2, L2, Y2, 
and C. Figure 4(a) illustrates this exposure model, which 
Vansteelandt and Sjolander (2016) also refer to generally as 
the propensity score (PS) model. Second, from the exposure 
model, predicted values for the exposure X3 are calculated, 
which we denote by X̂3: These values would be referred to 
as “propensity scores” if the exposure was dichotomous, but 
work essentially the same for continuous exposures. The 
idea of this score is that it contains all information from 
variables that are needed to block noncausal paths that con
tribute to the association between the exposure and the out
come (Imbens & Rubin, 2015). Third, a regression model 
for the outcome is specified conditional on the observed 
exposure X3, the predicted exposure X̂3, and the covariates 
X2, L2, Y2, and C, thereby blocking noncausal pathways. If 
only the exposure model in step 1 is correctly specified, 
then this procedure is comparable to regression adjustment 
on the propensity score, and the additional covariates only 
increase precision (Vansteelandt & Daniel, 2014). If only the 
covariate-outcome relations in the outcome model are cor
rectly specified, then we block all noncausal paths akin to 
the repeated multiple regression approach, and the add
itional PS covariate merely leads to an overfitted outcome 

5Note that, for continuous measures, the potential outcome for an exposure 
score of zero, Yfx1 , x2 , 0g, might not be substantively meaningful on itself as 
zero may lay outside the measurement range. However, for dichotomous 
exposures (commonly used for applications of SNMMs) a zero-score can 
represent a “no treatment” condition.
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model. The regression coefficient of X3 in the outcome 
model is the G-estimate of w3, that is ŵ3 : It is unbiased 
with both the exposure model and the outcome model cor
rectly specified, and consistent when only one of both mod
els is correct (i.e., this method is doubly-robust).

This entire procedure works similarly for estimating the 
CDEs of X2 and X1. In the SNMM, the CDE of X2 is para
meterized as

EðYfx1, x2þ1, 0g
4 − Yfx1, x2, 0g

4 jC ¼ c, L1 ¼ l1, Y1 ¼ y1Þ ¼ w2,
(5) 

The term on the left-hand side represents the difference in 
the expected outcome of end-of-study Y if all individuals were 
exposed to the regime fx1, x2 þ 1, 0g versus if all individuals 
were exposed to fx1, x2, 0g: Again, we condition on covariates 
to block all noncausal paths, C, X1, L1, and Y1. To get the 

unique effect of X2 (i.e., not going through future exposure), 
we additionally need to adjust for future exposure. Unlike the 
repeated multiple regression approach—in which we included 
future exposure as an additional covariate in the model—this 
method relies on computing a new outcome variable as if 
everyone had the same value on future exposures. The reason
ing behind this is that when future exposures are a constant, 
they cannot have a causal effect on the outcome. In practice, 
future exposure value is commonly set to zero for all individu
als such that the new outcome can be computed by

Y4; blipped-down ¼ Y4 − ŵ3X3: (6) 

This equation is similar to Equation (3), except that we 
now plug ŵ3 into w3. The new outcome is also referred to 
as the “blipped-down version of Y4” or the “candidate coun
terfactual”, and represents the outcome if unaffected by the 

Figure 4. Overview of the regression models that need to be correctly specified in the fitting procedure of a linear SNMM. A square around a variable implies that 
this variable needs to be included as a variable in the model. (a) Exposure model for X3. (b) Outcome model for estimation of the CDE of X3. (c) Exposure model for 
X2. (d) Outcome model for the CDE of X2 on end-of-study the X3-free end-of-study outcome. (e) Exposure model for G-estimation of Equation 7. Future exposure is 
set to X3 ¼ 0. (f) Outcome model for the CDE of X1 on the X2-and-X3-free end-of-study outcome. Future exposures are set to X2 ¼ 0 and X3 ¼ 0.
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exposure at occasion 3. To estimate w2, we first estimate an 
exposure model again; regressing X2 on the covariates X1, 
L1, Y1, and C (Figure 4c). Second, we compute the predicted 
values of exposure at time point 2, the PS score X̂2 for every 
person. Third, we fit a regression model for the blipped- 
down outcome Y4; blipped-down conditional on the covariates, 
observed exposure X2, and predicted exposure X̂2 (Figure 
4(d), note X3 is set to 0). The regression coefficient of X2 in 
the outcome model is then an estimate of w2.

Finally, in the SNMM, the CDE of X1 is parameterized as

EðYfx1þ1, 0, 0g
4 −Yfx1, 0, 0g

4 jC ¼ c, U ¼ uÞ ¼ w1: (7) 

The term on the left-hand side represents the difference in 
the expected outcome of end-of-study Y4 if all individuals 
were exposed to the regime fx1 þ 1, 0, 0g versus if all individ
uals were exposed to fx1, 0, 0g. To block all noncausal path
ways between X1 and the outcome, we need to control for 
the variables in C and U. However, the issue is that in cross- 
lagged panel research, U is often unobserved, because meas
urements tend to commence in an ongoing process, and 
hence realizations of X, Y, and L before the start of measure
ments (i.e., before t ¼ 1) are not measured. Nevertheless, 
these are confounders we want to adjust for. In the epidemio
logical and biostatistical literature, the first measurements of 
time-varying covariates are commonly regarded as covariates 
at baseline (i.e., at t ¼ 0) that are merely adjusted for, but 
which are not exposures of interest: That is, we do not 
attempt to estimate the CDE of X0 on Y4, but only estimate 
CDEs of exposures after baseline. This is also the strategy 
that we employ for our explanation here, as well as in the 
empirical example in Section 4.6 In addition to controlling 
for C and U, we need to control for future exposures by set
ting them to X2 ¼ 0 and X3 ¼ 0. As such, a new blipped- 
down version of Y4 is computed for every person by

Y4; blipped-down ¼ Y4 − ŵ3X3 − ŵ2X2: (8) 

To estimate w1, we follow the same procedure: Fitting an 
PS model for X1 given C, and U (see Figure 4e), computing 
the predicted exposure X̂1, and fitting a regression model for 
the blipped-down outcome given the covariates in C and U, 
observed exposure X1, and predicted exposure X̂1, (see Figure 
4f). The regression coefficient of X1 in the outcome model is 
then an estimate of w1. This completes the procedure for 
obtaining point estimates for the CDEs of SSC on end-of-study 
SE using a basic SNMM via G-estimation. To obtain confi
dence intervals for these estimates, Vansteelandt and Sjolander 
(2016) recommend the use of non-parametric bootstrapping.

3.3.3. Advantages
Like the repeated multiple regression approach, these linear 
SNMMs with G-estimation have a lower risk of model mis
specification compared to cross-lagged panel modeling 
approaches in SEM as no model needs to be specified for 

time-varying covariates L and Y (before the end-of-study), 
and the CDEs are obtained directly (Naimi et al., 2016). 
Furthermore, because this procedure is doubly-robust, the 
reliance on parametric assumptions being correctly specified 
is further reduced (although Kang & Schafer, 2007, nuance 
the perceived benefits of doubly-robust methods, showing 
that when both the exposure and the outcome model are 
misspecified, doubly-robust methods may actually show 
worse performance compared to non-doubly-robust coun
terparts). Additionally, forgoing the need to model the cova
riates L means that researchers can more easily adjust for 
multiple time-varying covariates, and it provides them with 
increased flexibility for specifying functional forms of 
dependencies in the exposure model and regression model 
(compared to SEM models).

The basic linear SNMM that we introduced here can be 
extended such that researchers can explore a wider range 
of research questions and using a greater variety of data. 
For example, Vansteelandt and Sjolander (2016) and 
Tompsett et al. (2022) discuss the inclusion of interactions 
to investigate effect modification, as well as analyses with 
time-varying outcomes using generalized estimating equa
tions with data in long-format, allowing for this method
ology to be applied to intensive longitudinal data as well. 
Finally, Loh and Ren (2023b) illustrate how the SNMM fit
ting procedure can be performed within the SEM frame
work. As such, researchers can combine advantages 
of SEM framework (e.g., working with latent variables, 
potential to use FIML) with the advantages of SNMMs 
with G-estimation.

3.3.4. Disadvantages
A disadvantage of the SNMM approach is that the imple
mentation of G-estimation of SNMMs in software, for 
example in R packages such as gestTools (Tompsett et al., 
2022) and DTRreg (Wallace et al., 2017), is currently still 
inflexible. Specifically, these packages are often tailored to 
situations which include lag-0 effects, and it can be chal
lenging to adjust the data file, and the input for required 
arguments in such a way that these R packages work for sit
uations without contemporaneous effects (as for our empir
ical example).

3.4. Conclusion

When comparing CLPMs in SEM with SNMMs with G-esti
mation, we can summarize their main differences in the fol
lowing five points. First, compared to CLPMs, SNMMs 
approaches do not require the specification of a model for 
the covariates, thereby reducing the risk of model misspeci
fication and bias. Second, by forgoing the specification of a 
covariate model, researchers have increased flexibility for 
including a large set of covariates compared to cross-lagged 
panel approaches. Third, the structural nested mean model
ing procedure by Vansteelandt and Sjolander (2016) is dou
bly-robust: It requires the specification of a model for the 
exposures and the outcome, and still results in consistent 

6An alternative strategy that is more common in cross-lagged panel modeling 
using SEM, is to control for L1 and Y1 to block all backdoor paths via U in 
case X, Y, and L were unobserved at baseline. This could be a viable strategy 
as long as we assume there are no lag-2 or longer effects present.
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estimates of CDE when either model is misspecified, thereby 
further reducing reliance on parametric assumptions. 
Fourth, in CLPMs, joint effects are obtained as linear com
binations of path-specific coefficients whereas in SNMMS, 
the CDEs are obtained directly as coefficients in the out
come models. Fifth, CLPMs are predominantly fitted within 
the SEM framework, whereas SNMMs with G-estimation 
can be fitted as structural equation models, using ordinary 
least squares, or using generalized estimating equations.

The different estimation approaches can thus lead to con
tradicting conclusions, even with the same variables being 
used. It is difficult to predict a priori how different (or simi
lar) the results following two different analyses will be. The 
importance of taking time in the preparation phase of a 
project to clarify the assumptions underlying candidate ana
lysis procedures thus cannot be stressed enough, and 
researchers are advised to choose the estimation procedure 
that relaxes the required assumptions as much as possible.

4. Empirical Example: Joint Effect of SSC on SE

To illustrate both approaches for assessing joint effects in a 
psychological context, we analyze data from the LISS panel 
to investigate the sociometer theory (Leary, 2012). This the
ory conceptualizes SE as a response to an individual’s satis
faction with their immediate social contacts. We explore 
this theory for a population of young adults who first 
moved out of their parent’s house, as this is an important 
life event that can impact one’s self-esteem, and involves the 
building of new social contacts. Specifically, we assess the 
joint effect of SSC on end-of-study SE.

The LISS panel consists of a random sample of Dutch 
households representative of the Dutch-speaking population 
in the Netherlands aged 16 years or older (Scherpenzeel, 
2018). It is based on a “rolling enrollment”, meaning that 
each year new participants are added to the existing partici
pant pool. We used yearly survey data administered between 
the years 2008 and 2022. From each participant, the 
first five yearly measures were selected (regardless of year- 
of-enrollment), corresponding to the time anchors t¼ 0 to 
t¼ 4. If participants were living at the same address as their 
father, mother, or both at t¼ 0, followed by not living at 
the same address as the father, mother, or both at t¼ 1, 
they were included in the study. The first exposure-time is 
then t¼ 1, and measurements at t¼ 0 are only used for 

selecting individuals that belong to your target population 
and for confounding adjustment using baseline covariates. 
The final sample included n¼ 601 participants.

Table 1 contains an overview and description of the vari
ables that were used in the analyses. Boden et al. (2008) 
identified confounding factors for the relation between SSC 
and SE, some of which were measured in the LISS data 
(e.g., age, sex, neuroticism, and frequency of drug and alco
hol use; see Table 1). Other confounding factors, such as 
maternal education, IQ, and parental alcohol problems/ 
criminal offending/illicit drug use were unavailable. This 
implies that the exchangeability assumption is compromised, 
and that our results might be biased. In practice, it would 
then be advisable to collect additional data, or to assess the 
sensitivity of the results to such unmeasured confounders 
using a sensitivity analyses. Yet, for the didactical purpose 
of this paper, we continue with this example.

4.1. Statistical analyses

For all analyses, it is assumed that the causal DAG in Figure 
1 corresponds to the causal process by which the data in the 
sample were generated. All analyses were performed in R 
(version 4.2.2; R Core Team, 2022). To keep the focus of this 
example on the parametric assumptions underlying both 
approaches, missing values in the sample were filled in by 
single imputation using the R package mice (version 3.16.0; 
Buuren & Groothuis-Oudshoorn, 2011). Annotated code can 
be found in the online supplementary materials.

For the cross-lagged panel modeling approach, we use the 
causal DAG as the basis for a path diagram, and included cova
riances between the variables at the first wave (t¼ 1), and cova
riances between residuals at the same wave from t¼ 2 
onwards. These models were fitted to the data using the R 
package lavaan (Rosseel, 2012). The CDEs of SSC at time 
points 1, 2, and 3 on Y4 were specified as linear combinations 
of paths in the model, and computed as additional parameters. 
For the SNMM with G-estimation, the procedure by 
Vansteelandt and Sjolander (2016) was followed. For all ana
lysis approaches, 95% confidence intervals were created based 
on the nonparametric bootstrap with 999 bootstrap samples 
using the R package boot (version 1.3-28; Canty & Ripley, 
2022). To assess the sensitivity of the results to the inclusion of 
covariates, multiple versions of these models were fitted, each 
time adjusting for a different set of confounders: The empty 

Table 1. Overview of variables included in the empirical example. Single fLS, fSE, and fNE scores were obtained by taking the mean over each of the 
respective items. Baseline covariates were measured at t ¼ – 1.

Variable Description Timing

Age Age (years). Baseline
Sex Gender (1¼man, 2¼women). Baseline
fNe Neuroticism, measured using the ten-item neuroticism scale by (Goldberg, 1999). Baseline
mum Overall relationship quality with mother (four-point scale, 1¼ not so good, 4¼ very good). Baseline
dad Overall relationship quality with father (four-point scale, 1¼ not so good, 4¼ very good). Baseline
fSE Self-esteem, measured using the ten-item Rosenberg Self-Esteem Scale (Rosenberg, 1965; Von Collani & Herzberg, 2003). Time-varying
fLS SE, measured using the five-item Satisfaction with Life Scale by Diener et al., (1985). Time-varying
drug Frequency of drug usage (either sedatives, soft drugs, XTC, hallucinogens, or hard drugs; 1¼ regular use, 0¼ never or sometimes). Time-varying
alc Frequency of alcohol consumption (eight-point scale, 1¼ almost every day, 8¼ not at all). Time-varying
part Relationship status (1¼ single, 0¼ partnered, at least for three months). Time-varying
fiSa Satisfaction with personal financial situation, measured with eleven-point scale (0¼ not at all satisfied, 10¼ entirely satisfied). Time-varying

12 MULDER, USAMI, HAMAKER

https://jeroendmulder.github.io/joint-effects-using-SNMM


null set, which includes no additional covariates; the simple set, 
which includes all baseline covariates and only continuous 
time-varying covariates; and the complete set, which includes 
all observed covariates. Note that we treat the alcohol con
sumption frequency as a continuous time-varying covariate 
here given it has eight ordered answer categories and an 
approximately symmetric distribution (Rhemtulla et al., 2012). 
Further note that the CLPM could not adjust for the full set of 
covariates, as the causal paths for the computation of CDEs 
would then involve the combination of both linear and probit 
or logit regression coefficients: Coefficients on different scales 
cannot be readily combined in a SEM, and require techniques 
from the causal mediation literature that go beyond the scope 
of this paper (Muth�en et al., 2016; Nguyen et al., 2016).

4.2. Results

Point estimates and 95% bootstrap confidence intervals of 
the joint effect of SCC on end-of-study SE using the CLPM 
can be found in the first three rows of Table 2. Fit indices 
indicated bad model fit: v2ð12Þ ¼ 323:381, p < .001, CFI ¼
.839, TLI ¼ .625, RMSEA ¼ .208, SRMR ¼ .088 for the null 
set; and v2ð48Þ ¼ 704:610, p < .001, CFI ¼ .913, TLI ¼
.361, RMSEA ¼ .151, SRMR ¼ .031 for the simple set 
(Browne & Cudeck, 1992; Hu & Bentler, 1999; Little, 
2013).7 When not adjusting for any covariates, the CDEs of 
SSC at t¼ 1 and t¼ 2 are small and positive, reaching sig
nificance at the a ¼ 0:05 level, and the CDE at t¼ 3 is con
siderably stronger. It implies that increases in SSC in the 
first, second, and third year after moving out of parents’ 
house increases end-of-study SE to varying degrees, even if 
SSC at later years is held constant. However, when adjusting 
for the simple set of covariates, all CDEs diminished, and 
the CDE at t¼ 1 did not reach significance anymore.

Results for repeated multiple regression approach were 
consistent across adjustment sets and CDEs. At t¼ 1, an 
increase in SSC did not appear to affect self-esteem three 
years after moving out. Estimates for the effect of SSC at 
t¼ 2 and t¼ 3 however, are positive, and reached signifi
cance at the a ¼ :05-level, which would imply that increases 
in SSC positively affect self-esteem two- and one-year later.

For the SNMMs with G-estimation, and across all covari
ates sets, the CDEs were negative and significant at the a ¼
0:05 level at t¼ 1, close to zero and nonsignificant at t¼ 2, 
and positive and significant at the a ¼ 0:05 level at t¼ 3. In 
particular, for the CDE at t¼ 1, the estimates and substan
tive conclusions derived from this differ meaningfully 
between the CLPM and RMR, and the SNMM analyses. 
Given the similarity of the SNMM-based results across the 
covariate sets, the differences in estimates at t¼ 1 is 
more likely to be due to differences in the parameteric 
assumptions made between both the CLPM- and the 
SNMM-methods, and the doubly-robustness property of 
SNMM with G-estimation. It is unknown which exact para
metric assumptions are incorrect, and to what degree, but 
given the complex nature of the phenomenon under study, 
some degree of violation is expected. Moreover, it is likely 
that there are numerous confounding covariates, both time- 
varying and time-invariant, that have not been taken into 
account here. This violates the causal conditional exchange
ability assumption (this is further elaborated upon in the 
Discussion), and such violations might impact both model
ing approaches differently (Kang & Schafer, 2007), thereby 
leading to different results.

4.3. Extensions with Lag-2 Effects

One aspect that can be improved using the available data is 
the conditional independence assumptions that are encoded 
in the causal DAG in Figure 1, and that have served as the 
basis for the above statistical analyses. The omission of lag-2 
effects are conditional independence assumptions that are 
regularly made in cross-lagged panel modeling, but that can 
negatively affect the validity of estimates when violated 
(VanderWeele, 2012). To prevent making these assumptions 
at all, we extend the CLPM, RMR, and the SNMM with lag- 
2 effects. The results are presented in Table 3, and show 
some meaningful differences in terms of the sign and 

Table 2. Point estimates and 95% bootstrap confidence intervals (in square brackets) of the controlled direct effects of SSC 
on end-of-study SE, estimated using a cross-lagged panel model (CLPM) with SEM, repeated multiple regression (RMR), and a 
linear structural nested mean model (SNMM with G-estimation). Analyses were adjusted for three sets of covariates.

Model Adjustment set CDE1 CDE2 CDE3

CLPM null 0.015 [0.005, 0.026] 0.066 [0.038, 0.091] 0.145 [0.094, 0.194]
simple seta 0.000 [–0.009, 0.008] 0.055 [0.030, 0.079] 0.120 [0.066, 0.173]

full setb – – –
RMR null −0.027 [–0.076, 0.021] 0.114 [0.061, 0.165] 0.126 [0.076, 0.175]

simple seta −0.006 [–0.062, 0.045] 0.121 [0.066, 0.172] 0.113 [0.059, 0.166]
full setb −0.003 [–0.061, 0.048] 0.122 [0.064, 0.172] 0.110 [0.061, 0.165]

SNMM null −0.236 [–0.293, −0.175] 0.039 [–0.021, 0.094] 0.159 [0.103, 0.213]
simple seta −0.152 [–0.204, −0.095] −0.011 [–0.062, 0.038] 0.134 [0.085, 0.193]

full setb −0.151 [–0.204, −0.094] −0.012 [–0.061, 0.038] 0.132 [0.083, 0.191]
aIncluding baseline covariates age, sex, neuroticism, relationship with mother and father; and time-varying covariates alcohol 
consumption and satisfaction personal financial situation.

bIncluding all covariates in Table 1.

7In the SEM literature, this is commonly interpreted as a sign of model 
misspecification, warranting changes to the model (e.g., the inclusion of lag-2 
effects or a random intercept factor). However, in the causal inference 
literature, some researchers argued that the importance of model fit for 
causal inference is greatly reduced for multiple reasons: (1) L€udtke and 
Robitzsch (2022); Orth et al. (2021) argue that model fit is uninformative 
about the appropriateness of a SEM in relation to a research question; (2) 
Tomarken and Waller (2005) argue that model fit is uninformative about the 
plausibility of the conditional exchangeability assumptions as encoded in an 
assumed causal DAG.
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significance of point estimates. For example, results follow
ing from the CLPM with additional confounding control at 
lag-2 change from positive significant, to negative significant 
for the CDE at t¼ 1, and for the CDE at t¼ 2 when 
adjusted for the simple set. For both the RMR and SNMM 
methods, the point estimates do change somewhat, but 
interpretation remains the same across time points and 
adjustment sets, irrespective of additional confounding con
trol at lag-2.

The choice of which model’s results to report might not 
be obvious in practice. For our empirical example, the 
choice of modeling approach, the covariate adjustment set, 
and the decision to control for lag-2 effects or not, mean
ingfully alters the results and substantive conclusions that 
would be drawn. One could argue that the SNMM with lag- 
1 and lag-2 effects and adjustment for the full covariate set 
makes the fewest causal and parametric assumptions, and 
hence produced the most reliable results. At the same time, 
violations of the causal identification assumptions for this 
empirical example imply that results from any method 
should not be interpreted causally, or that at the very least a 
sensitivity analysis should be done to assess how strong the 
effects of an unobserved confounder must be to meaning
fully change the results. The plausibility of the presence of 
such an unobserved confounder can then be debated 
(VanderWeele & Ding, 2017).

5. Discussion

Cross-lagged panel modeling is widely used by psychological 
researchers as a SEM approach for assessing lag-1 relation
ships between two variables over time. While some argue 
that SEM is a good framework for causal inference (e.g., 
Bollen & Pearl, 2013), others claim that this popular model
ing practice is not a viable option if the goal is to investigate 
causal relationships. One of the main points of concern is 
that attempts to model a causal process in its entirety has a 
high potential of model misspecification, and is unnecessary 
if interest is limited to a set of well-defined causal effects. 
This problem is only exacerbated with the inclusion of mul
tiple time-invariant and time-varying covariates, which 
researchers would want to adjust for to make the causal 

identification assumption of conditional exchangeability 
plausible in nonexperimental data.

In this article, we explored this concern using an empir
ical psychological example. Taking inspiration from disci
plines such as epidemiology and biostatistics, we introduced 
joint effects as an alternative causal hypothesis that can be 
interesting for psychologists to target. While these effects 
can be specified akin to a cross-lagged panel modeling 
approach, they are traditionally estimated with SNMMs 
using G-estimation. This is an appealing method as it does 
not require the specification of a model for covariates, and 
is flexible in accommodating a large set of (time-varying) 
covariates, and lag-0 and lag-2 (or further) effects. The 
implementation of G-estimation by Vansteelandt and 
Sjolander (2016) is also robust to misspecification in either 
the exposure model or the outcome model, further reducing 
this method’s reliance on parametric assumptions. 
Furthermore, through the use of propensity scores, this 
method can accommodate a large set of covariates that 
researchers might want to adjust for in their analyses. These 
properties provide a motivation for psychological research
ers to seriously consider the use of SNMM with G-estima
tion to investigate causal relationships between variables in 
panel data.

To further support integration of formal causal inference 
methods with literature on psychological research methods, 
we discuss some overlap between these strands of literature 
below. We also consider some limitations of our empirical 
example.

5.1. Controlling for Stable, Between-Person Differences

A much discussed idea in psychology, and the social scien
ces more generally, is the separation of longitudinal data 
into stable, between-person differences, and temporal, 
within-person fluctuations (Asparouhov & Muth�en, 2019; 
Hamaker et al., 2015; Kreft et al., 1995). The idea has been 
discussed extensively in the context of cross-lagged effects, 
but equally applies to the investigation of joint effects. The 
appeal is that a decomposition of observed variance allows 
researchers to better align effect estimates from statistical 
analyses with their research questions about (causal) effects 
at the within-person level (Raudenbush & Bryk, 2022). This 

Table 3. Point estimates and 95% bootstrap confidence intervals (in square brackets) of the controlled direct effects of SSC on 
end-of-study SE, estimated using a cross-lagged panel model (CLPM) with SEM, repeated multiple regression (RMR), and a lin
ear structural nested mean model (SNMM with G-estimation). Analyses were adjusted for three sets of covariates at both lag-1 
and lag-2.

Model Adjustment set CDE1 CDE2 CDE3

CLPM null −0.030 [–0.059, −0.002] −0.033 [–0.083, 0.019] 0.125 [0.077, 0.175]
simple seta −0.053 [–0.092, −0.019] −0.070 [–0.121, −0.019] 0.125 [0.078, 0.172]

full setb – – –
RMR null −0.027 [–0.076, 0.021] 0.166 [0.113, 0.219] 0.121 [0.071, 0.168]

simple seta −0.006 [–0.062, 0.045] 0.161 [0.108, 0.211] 0.116 [0.071, 0.163]
full setb −0.003 [–0.061, 0.048] 0.157 [0.106, 0.209] 0.117 [0.072, 0.165]

SNMM null −0.171 [–0.230, −0.113] 0.006 [–0.048, 0.061] 0.196 [0.143, 0.247]
simple seta −0.155 [–0.209, −0.097] 0.019 [–0.067, 0.027] 0.162 [0.116, 0.207]

full setb −0.155 [–0.208, −0.095] −0.019 [–0.066, 0.029] 0.159 [0.113, 0.203]
aIncluding baseline covariates age, sex, neuroticism, relationship with mother and father; and time-varying covariates alcohol 
consumption and satisfaction personal financial situation.

bIncluding all covariates in Table 1.
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line of thinking has inspired many researchers in the social 
sciences, and led to the development of many CLPMs 
(Usami et al., 2019).

While this idea has sparked much excitement (and 
debate) in the psychological literature, it has passed the epi
demiological and biostatistics literature relatively unnoticed. 
Only recently, Usami (2022) introduced a method for com
bining the random intercept cross-lagged panel model with 
structural nested mean modeling approaches for estimating 
CDEs. This development combines strengths of analysis 
approaches from different strands of literature. Work on 
making these developments broadly applicable for applied 
researchers is ongoing (Usami, 2023).

5.3. Lag-2 (and Longer) Effects

Different rationales for inclusion of lag-2 (and longer) 
effects in statistical models have been provided in the SEM 
literature and the causal inference literature. In cross-lagged 
panel modeling, the addition of lag-2 autoregressive effects 
is sometimes discussed in the context of achieving adequate 
model fit (Hamaker et al., 2015; Muth�en & Asparouhov, 
2022b). This is related to the discussion on controlling for 
stable, between-person differences, with lag-2 autoregressive 
effects interpreted as the stabilizing influences underlying 
trait-like differences between individuals (Asendorpf, 2021). 
In the causal inference literature, however, lag-2 (and lon
ger) autoregressive and cross-lagged effects are usually con
sidered for confounding control. Whenever exposures or 
covariates have effects that span multiple lags, it is possible 
that confounding cannot be adjusted for by merely control
ling for immediately prior variables in statistical analyses. 
This is the case when, for example, in the causal DAG of 
Figure 1 L1 directly effects X3 (a lag-2 cross-lagged effect) 
and Y4 (a lag-3 cross-lagged effect). Then, to estimate the 
CDE of X3 on end-of-study Y4 without bias, additional 
lagged covariates need to be included as controls in the 
analyses. So while the control of immediately prior (i.e., lag- 
1) exposures and covariates is usually important for control 
of confounding of CDEs, it might be advisable to also con
sider lag-2 (and longer) effects in causal DAGs, and adjust 
the statistical analyses based on this (VanderWeele, 2021). 
Others, such as Vansteelandt and Sjolander (2016) and 
Daniel et al. (2013), advise to condition on the entire expos
ure and covariate history in analyses.

5.3. Limitations of the Empirical Example

For this article, we have used an empirical example that is 
close to the cross-lagged panel modeling practices that 
many psychological researchers are familiar with. However, 
from a causal inference point-of-view, there are some ser
ious concerns. First, the causal assumption of (conditional) 
exchangeability is compromised, as we have been unable to 
adjust for all confounders identified by Boden et al. (2008) 
in our analyses. For our target population of young adults, 
there are also likely to be a numerous additional time- 
varying covariates that we would want to adjust for, such as 

job success, academic performance, and social media usage. 
Second, we argue that the causal assumption of consistency 
is compromised as well. There are numerous options for 
a(n) (hypothetical) intervention on SSC, each of which 
might have a different effect on the outcome. Information 
on how SSC was increased/decreased was also not present 
in the empirical data. As such, our research question is ill- 
defined, making it difficult to link our theoretical interest to 
the observed data (Hern�an, 2016).

5.4. Conclusion

We discussed joint effects as an alternative causal effect 
to cross-lagged effects, and discussed the use of SNMM 
with G-estimation as an alternative modeling approach in 
a psychological context. We hope that this introduction 
and the empirical example allows psychological researchers 
to make better informed decisions about which kind of 
causal effect is interesting to target, while also managing 
the number of parametric assumptions that one needs to 
make during the statistical analyses. While explicit causal 
reasoning is not unique to causal inference methods in 
the epidemiological and biostatistical literature, the statis
tical (parametric) advantages of an SNMM approach 
should be a motivation for psychological researchers to 
gain experience with this modeling approach. This article 
aids in developing an intuition for some of the concepts 
that this modeling approach builds on. We recommend 
the recent work of Loh and Ren (2023b) and the work of 
Loeys et al. (2014) as introductions to the G-estimation 
procedure itself. The works of Daniel et al. (2013), 
Hern�an and Robins (2020), and Naimi et al. (2016) are 
useful as more detailed introductions to other causal 
inference methods from an biomedical perspective.
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