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ABSTRACT
The random intercept cross-lagged panel model (RI-CLPM) is a popular model among psychologists
for studying reciprocal effects in longitudinal panel data. Although various texts and software pack-
ages have been published concerning power analyses for structural equation models (SEM) generally,
none have proposed a power analysis strategy that is tailored to the particularities of the RI-CLPM.
This can be problematic because mismatches between the power analysis design, the model, and
reality, can negatively impact the validity of the recommended sample size and number of repeated
measures. As power analyses play an increasingly important role in the preparation phase of research
projects, an RI-CLPM-specific strategy for the design of a power analysis is detailed, and implemented
in the R-package powRICLPM. This paper focuses on the (basic) bivariate RI-CLPM, and extensions to
include constraints over time, measurement error (leading to the stable trait autoregressive trait state
model), non-normal data, and bounded estimation.
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A popular model among psychologists for the analysis of
panel data is the random intercept cross-lagged panel model
(RI-CLPM). It was first formally introduced by Hamaker
et al. (2015) as an extension of the traditional cross-lagged
panel model (CLPM; Rogosa, 1980) to account for stable,
between-unit differences in the data. Unlike the CLPM, the
RI-CLPM separates stable, between-unit variance from fluc-
tuating, within-unit variance: The autoregressive effects can
then be interpreted as purely within-unit effects and carry-
over (rather than estimates of stability of the rank-order of
units, as is the case in the CLPM), and cross-lagged effects
can be interpreted as the within-unit effect or “spillover” of
one domain into another (Mulder & Hamaker, 2021). This
feature addresses some long-standing concerns that
researchers have had about panel data analysis, such as the
conflation of within- and between-unit variance for studying
within-unit processes, unobserved heterogeneity, and bias in
the cross-lagged effects due to omitted variables (Andersen,
2021; Hamaker et al., 2015; Heise, 1970; Kenny & Zautra,
1995, 2001). The reader is referred to Usami (2021),
Zyphur, Allison, et al. (2020), and Zyphur, Voelkle, et al.
(2020) for an overview of how related SEM models address
these concerns.

A frequently asked question by substantive researchers in
relation to the RI-CLPM, is about the required sample size
for detecting hypothesized effects. Such questions of statis-
tical power are especially relevant in the design phase of a
study: Underpowered study designs are more likely to result
in Type II errors (i.e., incorrectly failing to reject the null-

hypothesis of no effect), whereas overpowered studies (i.e.,
study designs with a sample size larger than necessary to
find hypothesized effects) can place an unreasonable burden
on the research resources (Zhang & Liu, 2018). While there
are some general rules of thumb in the structural equation
modeling (SEM) literature for what is regarded an adequate
sample size (cf. Barrett, 2007; Jackson, 2003; Little, 2013;
MacCallum et al., 1996), in practice, statistical power
depends on many factors and assumptions, making it diffi-
cult to come up with a generally applicable sample size rec-
ommendation. When planning a longitudinal study, it is
therefore advized to perform a power analysis that is tail-
ored to a particular research context and research question,
to find the optimal study design (Oertzen et al., 2010; Wang
& Rhemtulla, 2021; Wolf et al., 2013). However, it can be
challenging to design and perform such a study for
researchers who are inexperienced with simulation-based
power analyses, the particularities of a model, and the soft-
ware required to automate the process.

This paper proposes a strategy for setting up and execut-
ing a power analysis for the RI-CLPM based on Monte
Carlo simulations, and implements it in the R-package
powRICLPM. Although treatments on the design and
implementation of Monte Carlo studies have appeared
before (cf. Lee, 2015; Muth�en & Muth�en, 2002; Paxton
et al., 2001; Wang & Rhemtulla, 2021; Zhang & Liu, 2018),
these texts are not particular to the characteristics of the
RI-CLPM, or target model (mis)fit rather than specific
parameters within the model. Performing a power analysis
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for the RI-CLPM involves numerous model-specific and
complex decisions which have not been described in the lit-
erature yet. The focus of this paper is on �a priori power
analysis (e.g., during the planning phase of a study, or as
part of a grant proposal), but the procedure can similarly be
used for post hoc power analysis (e.g., at a reviewer’s
request, or because dropout or nonresponse resulted in a
lower-than-expected sample size; Hancock & French, 2013).

The paper is organized as follows: First, an illustrative
example concerning academic amotivation is introduced
that is used throughout. Second, the RI-CLPM itself is pre-
sented, as well as the factors influencing its power. Third, a
6-step power analysis strategy is laid out. Fourth, this strat-
egy is demonstrated using the powRICLPM package and
the illustrative example. Fifth, extensions of the power ana-
lysis strategy are described, including the addition of con-
straints on parameters over time, measurement error
(thereby leading to the bivariate stable trait autoregressive
trait state model by Kenny & Zautra, 2001), non-normal
data, and bounded estimation. This paper concludes with
limitations of the proposed procedure and a comparison
with other software packages for power analysis.

1. Illustrating Example: Self-Alienation and
Academic Amotivation

Suppose we are interested in the prevention of loss of aca-
demic motivation in students, and have reason to believe
(based on previous research and expert opinion) that self-
alienation is a driving factor herein. More specifically, we
want to investigate the reciprocal effects of self-alienation X
(the feeling that one does not know oneself) and academic
amotivation Y (a lack of intrinsic or extrinsic motivation for
pursuing academic goals) in college students over time.
Unfortunately, due to time and money constraints, we are
unable to design a randomized experiment in which self-
alienation X is intervened on, and are therefore bound to
observational data. As such, we want to use the RI-CLPM
to estimate cross-lagged effects while controlling for stable,
between-person differences in self-alienation and academic
amotivation. Suppose further that we deem the assumptions
underlying the RI-CLPM plausible, namely that the recipro-
cal effects between self-alienation and academic amotivation
are: (a) linear; (b) constant across units (homogeneity); (c)
constant across the values of our observed variables and
error terms (no effect modification); (d) not affected by
unobserved time-varying confounding; and (e) the error
terms (approximately) follow a multivariate normal distribu-
tion (Gische & Voelkle, 2021).

Prior to the start of the data collection, we want to per-
form a power analysis to determine the required sample size
N and number of repeated measures T for detecting poten-
tial reciprocal effects with a power level of 0.8. Planning for
N and T is a matter of balance: It can be beneficial in terms
of time and costs to collect an additional wave of data
rather than additional participants, or vice versa, while
maintaining the desired level of statistical power. Some
researchers, like Winkens et al. (2006), explicitly include a

“costs function” in their power analysis to determine an
optimal trade-off in terms of sample size and number of
repeated measures (as well as other factors).

2. The Model

Figure 1 presents an RI-CLPM for a study design with three
repeated measures. Let Xit and Yit be the observed values
for self-alienation and academic amotivation for individual i
at time point t, respectively. By fitting an RI-CLPM, these
observed variables are decomposed into three independent
components: grand means lX, t and lY , t for each time-point,
time-invariant random intercept factors RIX, i and RIY , i, and
time-varying within-components WX, it and WY , it , for self-
alienation and academic amotivation respectively. These
decompositions are represented by

Xit ¼ lX, t þ RIX, i þWX, it , (1)

Yit ¼ lY , t þ RIY , i þWY , it: (2)

The grand means are time-specific means across all indi-
viduals, and they can be freely estimated in the model or
constrained over time. The random intercepts RIX and RIY
are latent factors, with the observed measures for self-alien-
ation as indicators for RIX and the observed measures for
academic amotivation for RIY. They capture individuals’ sta-
ble, time-invariant (i.e., for the duration of the study) devia-
tions from the grand means lX, t and lY , t , such that the
random intercept factors exclusively represent between-per-
son variance. In the standard RI-CLPM presented here, the
factor loadings of the random intercept factors are fixed at
1, implying that the size of the stable, between-person

Figure 1. A bivariate random intercept cross-lagged panel model with three
waves of data. at and dt are autoregressive effects of WX and WY, respectively. ct
and bt are the cross-lagged effects of WX , t�1 on WY , t and WY , t�1 on WX , t ,
respectively. The mean structure with lX, t and lY, t is not explicitly included here.
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differences is invariant over time. However this may be an
assumption that researchers want to check by freely estimat-
ing these factor loadings and comparing model fit (Mulder
& Hamaker, 2021). Finally, the within-components WX, it

and WY , it represent the deviation of an individual at a spe-
cific time-point from the individual’s expected score based
on the grand mean and the random intercept.

Next, autoregressive and cross-lagged effects are added
between the within-components at subsequent waves, such
that

WX, it ¼ atWX, i, t�1 þ btWY , i, t�1 þ uit , (3)

WY , it ¼ dtWY , i, t�1 þ ctWX, i, t�1 þ vit , (4)

where at represents the autoregressive effect of self-alien-
ation from wave t� 1 to wave t, dt represents the autore-
gressive effect of academic amotivation from wave t� 1 to
wave t, bt is the cross-lagged effect from academic amotiva-
tion at wave t� 1 to self-alienation at wave t, and ct is the
cross-lagged effect from self-alienation at wave t� 1 to aca-
demic amotivation at wave t. uit and vit are zero-mean nor-
mally distributed residuals with variances r2

u, t and r2
v, t ,

respectively, and they are allowed to covary with each other
within each wave. Because the within-person variance is
separated from the stable, between-person variance, the
lagged effects pertain exclusively to within-person fluctua-
tions. The autoregressive parameters at and dt can then be
interpreted as carry-over or inertia (Kuppens et al., 2010;
Suls et al., 1998), whereas the cross-lagged parameters bt
and ct represent the within-person spill-over of the one con-
struct into the other (i.e., controlled for stable, between-per-
son differences), and vice versa. Finally, including a
covariance between the between-components RIX and RIY
completes the basic setup of the RI-CLPM. The model is
flexible, and can be extended to include constraints over
time, time-invariant and time-varying predictors and out-
comes, multiple groups, multiple indicators (Mulder &
Hamaker, 2021), and interactions to test for moderation
(Ozkok et al., 2022).

2.1. Factors Influencing Power

Besides sample size and the number of repeated measures,
there are many other factors that influence the RI-CLPM’s
power to detect individual non-zero parameters.1 It is
important to carefully consider and include these in the
setup of a power analysis as they can impact the validity of
the power analysis results. Here, these factors are divided

into two groups: Characteristics of the study design, and
characteristics of the data.

Characteristics of the study design that influence statistical
power are interesting because they are under control of the
researcher, and can be tweaked to achieve the desired
amount of power. Sample size and number of repeated
measures are the two most obvious examples of such fac-
tors. Others include: (a) the significance criterion, where a
larger criterion leads to a higher probability of rejecting the
null-hypothesis of no effect, but also increases the probabil-
ity of Type I errors (Zhang & Liu, 2018); (b) model com-
plexity, where it has been suggested that models with fewer
freely estimated parameters, for example due to imposed
parameter constraints over time, have more power to detect
non-null effects (Wang & Rhemtulla, 2021); and (c) in the
case of a multiple-indicator RI-CLPM, the number of indi-
cators, as the inclusion of multiple indicators allows for con-
trolling for measurement error, thereby increasing power
(Oertzen et al., 2010; Wang & Rhemtulla, 2021).

Characteristics of the data that impact power are import-
ant to consider as well. Even though these cannot be con-
trolled by the researcher, failing to adequately represent
these data characteristics in the simulated data in the power
analysis can negatively affect the validity of the power ana-
lysis results. These factors include: (a) the effect size, where
larger effects in the data result in larger test statistics, and
thus greater power to reject the null-hypothesis of no effect
(Wang & Rhemtulla, 2021); (b) non-normality, because
many SEM models actually assume multivariate normal
data, and non-normality then negatively impacts power
(Yuan et al., 2015; Zhang 2014); (c) missing data, although
some missing data patterns have a larger impact than others
(Zhang & Liu, 2018); (d) the reliability of indicators, where
smaller measurement error variances leads to larger power
(this is also related to the impact of the use of multiple indi-
cators on power; Oertzen et al., 2010; Wang & Rhemtulla,
2021); and (e) the proportion of between-unit variance in
the observed data. This last factor warrants additional
explanation as the decomposition of observed variance into
independent between-unit and within-unit variance is par-
ticular to the RI-CLPM (and the stable trait autoregressive
trait state model, as discussed in Section 5.2 “Measurement
Error”). If a large portion of the observed variance is cap-
tured by the random intercepts, this implies that relatively
little variance remains in the within-components.
Consequently, point estimates of parameters at the within-
unit level of the model, including the lagged effects of inter-
est, are less certain, leading to higher standard errors and
lower power. This point will be illustrated in Section 4 using
the illustrative example.

3. The Power Analysis Strategy

With the illustrative example, the RI-CLPM, and the factors
influencing its statistical power introduced, a strategy for
RI-CLPM power analysis is presented next. Because analyt-
ical solutions to power-related questions often become
intractable in realistic situations, with small sample sizes,

1To get some intuition of why increasing the number of repeated measures
increases power in the RI-CLPM, it is useful to consider the concept of cluster-
mean centering from the multilevel literature (Kreft et al., 1995). Rewriting
Equations 1 and 2 shows that the within-components in the model are
obtained by subtracting the between-components from the observed
variables. The parameters governing RIX and RIY are unknown, however, and
must be estimated from the data. This introduces measurement error in the
between-components, and by Equations 1 and 2, also in the within-
components (Asparouhov & Muth�en, 2019). A larger number of repeated
measures reduces the measurement error in RIX and RIY, resulting in less error
in the within-components, and thereby increasing the power to detect lagged
effects (Zhang & Liu, 2018).
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complex models, and when the underlying assumptions of a
model are not met (Bandalos & Leite, 2013; Lee, 2015), this
power analysis strategy relies on Monte Carlo simulations
instead (Paxton et al., 2001). In general, a Monte Carlo
study is based on generating R samples from a model that is
thought to represent the population of interest (referred to
as the population model), and then estimating the parame-
ters in each sample r ¼ 1, . . . ,R: The parameter estimates
from each sample are then collected, forming an (artificial)
empirical sampling distribution for each parameter. The
performance of the estimated parameters is then based on
properties of this sampling distribution. In the case of a
power analysis, the population model is the same as the esti-
mated model: Here, the RI-CLPM. Sampling distribution
properties of interest include the proportion of times the
confidence interval for the parameter(s) of interest does not
include 0 (i.e., the power), the width of the associated confi-
dence interval(s) (i.e., the accuracy), and the mean square
error (MSE). Other properties exist, like the percentage and
relative bias, the standard deviation around the mean par-
ameter estimate, and the coverage rate of the confidence
interval, but are typically not the primary focus of a
power analysis.

The power analysis strategy presented here contains
6 steps:

1. Determine experimental conditions of interest (e.g.,
with varying sample sizes, numbers of repeated meas-
ures, or proportions of between-unit variance, amongst
other things).

2. Choose and/or compute population parameter values.
3. Generate data from an RI-CLPM using the population

parameter values from step 2.
4. Estimate an RI-CLPM on the data generated in step 3.
5. Repeat steps 3 and 4 R times for each experimen-

tal condition.
6. Summarize the R results and compare across experi-

mental conditions.

3.1. Step 1: Define Experimental Conditions

The first step entails determining the experimental condi-
tions that you are interested in simulating the power for. In
this context, an experimental condition is a combination of
values for each factor that influences the RI-CLPM’s power,
for instance, the experimental condition with a sample size
of 500, 3 repeated measures, a significance criterion of 0.05,
a 50 : 50 proportion of within- and between-unit variance,
data with a skewness of 0, etc. In an �a priori power analysis,
a range of experimental conditions is included, where sam-
ple sizes and numbers of repeated measures are typically
varying across conditions. If none of the included experi-
mental conditions leads to the desired amount of power, the
range of experimental conditions can be extended.

The key issue here is determining what are realistic val-
ues for the factors (other than the sample size and the num-
ber of repeated measures) that make up an experimental
condition. If data are generated under conditions that are

not representative of empirical data, the validity of the
power analysis results can be severely limited (Lee, 2015;
Paxton et al., 2001). This can happen, for example, when
researchers wrongly assume a 90 : 10 proportion of within-
:between-unit variance, whereas in reality it is approximately
50 : 50: Therefore, it is recommended to define values for
these factors using theory, such that any decisions can be
explained and defended. Previous studies on the same topic
and expert knowledge can be important sources of informa-
tion for deciding what are realistic values (Bandalos & Leite,
2013; Muth�en & Muth�en, 2002). When the appropriateness
of certain choices are ambiguous, it might be recommend-
able to limit the values to conservative options: For example,
a higher proportion of between-unit variance, or increased
levels of non-normality. Alternatively, these factors can be
allowed to vary across simulation conditions as well, rather
than relying on a single (ambiguous) decision. This allows
the researcher to determine what conditions are tolerable
without loss of the desired power level (Bandalos &
Leite, 2013).

For the illustrative example, let the sample size range from
200 to 2000 using steps of 100, and the number of repeated
measures range from 3 to 5. Regarding appropriate values for
the proportion of between-unit variance, Kim et al. (2018)
found 56% and 59% stable, between-unit variance for self-
alienation and academic amotivation, respectively, for
biweekly measurements, for a total of eight weeks. However,
there is likely to be some uncertainty in basing the propor-
tion of between-unit variance on previous research because
research designs and contexts are never perfectly equivalent.
For example, we might think that intervals of 1 month
between repeated measures better reflect the time it takes for
the causal effect under study to take place (Heise, 1970;
Mitchell & James, 2001), and therefore plan to take monthly
measurements rather than biweekly measurements. This dif-
ference in the timing of measurements is likely to affect the
proportion of between-unit variance in the collected data.
Therefore, to take this uncertainty into account, a range of
proportions of between-unit variance is included in the
power analysis, namely 0.3, 0.5, and 0.7. Furthermore, for the
sake of interpretability of this illustrative example, the trad-
itional significance criterion of 0.05 is used to denote signifi-
cance, and we assume no deviations from normality, no
missing data, and no measurement error (i.e., perfect reliabil-
ity of the indicators).

3.2. Step 2: Choose and/or Compute Population
Parameter Values

To generate data in step 3, a population model needs to be
specified that acts as a data generating mechanism. To this
end, population values need to be specified for each param-
eter in the RI-CLPM first. In this strategy, population values
need to be set for: (a) the autoregressive and cross-lagged
effects (standardized); (b) the correlations between within-
components; and (c) the correlation between the random
intercepts. Similar to defining the experimental conditions
in step 1, the key issue is to choose population parameter
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values that are realistic. Again, it is recommended to base
these decisions on previous literature, or expert opinion. In
case of uncertainty, a good strategy might be to be conser-
vative: Pick values on the smaller side of the plausible range.
Other parameters in the RI-CLPM are either computed
from these population parameter values (like the residual
variances and covariances of the within-components at wave
2 and further), determined based on the experimental con-
ditions as defined in step 1 (the random intercept varian-
ces), or set to 0 because they are not of primary interest
here (the mean structure).

3.2.1. Step 2.1: Within-Unit Parameters
Within-unit parameters include the autoregressive effects at
and dt, cross-lagged effects bt and ct, variances and covari-
ance for the within-components at wave 1, and the residual
variances and covariances for the within-components at
wave 2 and further. For the lagged effects we rely on the
specification of standardized effects in the population model
such that the power analysis does not depend on any par-
ticular metric. Kim et al. (2018) report standardized autore-
gressive effects of self-alienation and academic amotivation
between 0.206 and 0.266, and between 0.294 and 0.529,
respectively. The standardized cross-lagged effect from self-
alienation to academic amotivation was estimated to be
between 0.08 and 0.104, while the reverse effect was esti-
mated to be between 0.154 and 0.301. Our strategy is to be
conservative, and as such we specify a small effect of 0.20
for the autoregressive effect of self-alienation, and a small to
medium effect of 0.30 for the autoregressive effect of aca-
demic amotivation (following guidelines by Cohen, 1988).
This conservative approach would imply that the population
parameter values for the cross-lagged effect of self-alienation
to academic amotivation are set to be extremely small (i.e.,
0.08). However, such small effects are arguably not interest-
ing in practice and it is recommended to use a cutoff
value—for example 0.10 as recommended by Paxton et al.
(2001)—for population parameter values. We set the cross-
lagged effects to be 0.10 for the effect from self-alienation to
academic amotivation, and to be 0.15 for academic amotiva-
tion to self-alienation.

For these population values to be interpreted as standar-
dized effects, the variances of the within-components need
to be 1. At the first wave, the variances can be set to 1 dir-
ectly as these variables are exogenous, and their covariance
(which is now also the correlation) is set to 0.26, as reported
by Kim et al. (2018). However, setting the variance of the
within-components at wave 2 and further is more involved
because these variables are endogenous. Hence, only the var-
iances and covariance of the residuals can be set directly,
rather than the variances of the within-components them-
selves. Taking the within-components of academic amotiva-
tion and self-alienation at wave 2 as an example, it can be
shown using the path-tracing rules that their variances are a
function of the variance they “inherit” from their predictors
(the within-components of academic amotivation and self-
alienation at the first wave), as well as the variance from
their residuals (see Appendix A for details). Therefore, we

must compute how much variance the residuals should have
such that, together with the variance from their predictors,
the variance of the within-components add up to 1.

The residual variances and covariance can be expressed
as a function of the population values for the lagged effects
and the correlations between the within-components (Kim
& Nelson, 1999), as derived in Appendix B. Using this rela-
tionship, the residual variances and residual covariance for a
wave t, given the lagged effects and the correlation between
the within-components at the previous wave t�1, can be
computed such that it results in a variance of 1 for the
within-components at wave t. For our example, this results
in a residual variance of the within-component of self-alien-
ation of 0.9219, a residual variance of the within-component
of academic amotivation of 0.8844, and a residual covari-
ance of 0.1755 at wave 2. Under the assumption of statio-
narity, whereby the lagged effects and the variances of and
correlations between the within-components do not change
over time, the residual variances and the residual covariance
similarly apply to the within-components at wave 3 and fur-
ther, ensuring that all within-components have a variance of
1, and that the population lagged effects can be interpreted
as standardized effects at each time point.

3.2.2. Step 2.2: Between-Unit Parameters
Next, the population parameter values for the between-unit
parameters need to be set, including the variances of, and
covariance between the random intercepts. As the variances
of the within-components are designed to be 1, the ratio of
between- and within-unit variance is determined by the vari-
ance of the random intercepts: Setting the random intercept
variances to 1 implies a 50% between- and 50% within-unit
variance, while setting the random intercept variance to 3
leads to 75% between- and 25% within-unit variance in the
observed variables. The proportion of between-unit variance
is already chosen in step 1, so the exact population value of
the random intercept variances can simply be computed from
this. Finally, along the lines of Kim et al. (2018) we set the
correlation between the random intercepts to be 0.35.

Optionally, the means can be set in the population
model. While this can be of interest in the case of a multiple
indicator RI-CLPM, the mean structure is typically not of
(primary) interest in any basic RI-CLPM. In the former
case, it is recommended to test if strong measurement
invariance over time holds and therefore researchers should
constrain the factor loadings and intercepts/means over
time. As this is not of interest in the illustrative example,
the mean structure is ignored here and the grand means are
set to 0, lX, t ¼ lY , t ¼ 0:

3.3. Steps 3–5: Generate Data, Estimate RI-
CLPM, Repeat

Once the design of the power analysis has been decided
upon (i.e., the experimental conditions and population par-
ameter values are defined), it can be implemented. The pro-
cess of running a Monte Carlo power analysis—repeatedly
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generating a sample of data from the population model and
estimating parameter values—creates a lot of data and
requires adequate computing power. It is therefore import-
ant to automate the process, and the R-package
powRICLPM has been created specifically for this purpose,
implementing the power analysis strategy outlined here. The
package is demonstrated in Section 4.

There are 2 more factors to consider in these steps: The
number of replications R, and the seed. First, the number of
replications needs to be large enough to ensure that the
results have converged to a stable solution (Muth�en &
Muth�en, 2002): Too few replications will lead to a large
uncertainty around the results, whereas too many replications
can take a long time to run, especially for complex models,
and large numbers of experimental conditions. An alternative
strategy for dealing with many experimental conditions is to
first run a power analysis with a reduced number of replica-
tions (e.g., 50 or 100 replications) to get preliminary results,
and then validate these results, using a larger number of rep-
lications only for those experimental conditions that are close
to the desired power levels. Second, use a seed to determine
the starting point for the random simulation of data. This
ensures that the results can be replicated.

3.2.4. Step 6: Summarize Results

Before interpreting the results, it is important to check if
certain experimental conditions resulted in a high number
of convergence issues or inadmissible results (e.g., negative
variances). This indicates that the results of the power ana-
lysis for these conditions might be unreliable, and that esti-
mation of the model in these conditions is unstable. The
powRICLPM package keeps track of convergence issues,
inadmissible parameter estimates, and fatal errors terminat-
ing an estimation procedure, and can report to the user the
number of times each occurs per experimental condition.

Next, multiple metrics can be computed that summarize
the simulated sampling distributions for the parameter of
interest, per experimental condition. The powRICLPM
package reports: (a) the mean estimate over all R replica-
tions; (b) the standard deviation of the estimates; (c) the
mean standard error of the estimates; (d) the mean square
error; (e) the accuracy, computed as the mean length of
the confidence interval; (f) the coverage rate, computed as
the proportion of times the confidence interval included the
true population value; and (g) the power (Muth�en &
Muth�en, 2002, Muth�en & Muth�en, 2017). In addition, it can
be visualized how these metrics change across experimental
conditions, for example as a function of sample size, num-
ber of repeated measures, and the proportion of between-
unit variance. Using these metrics and visualizations, the
sample sizes and number of repeated measures that lead to
the desired amount of power can be determined.

4. The powRICLPM Package

The powRICLPM package provides functions to automate
steps 2 to 5, as well as methods for summarizing the results

of the analysis as described in step 6. It is available from the
Comprehensive R Archive Network (CRAN). For the devel-
opment version of the package (including the latest updates
and functionalities) and fully annotated R-code for the illus-
trating example, the reader is referred to the package’s
online documentation at https://jeroendmulder.github.
io/powRICLPM.

The main function powRICLPM() implements steps 2
to 5, and follows the procedure as outlined in Figure 2.
First, users must specify: (a) which experimental conditions
they want to explore using the sample_size, search_�,
time_points, and ICC arguments, (b) the population
parameter values of the lagged effects, and correlations
between the within-components and between the random
intercepts in the Phi, within_cor, and RI_cor argu-
ments, respectively, and (c) their desired power level in the
target_power argument. Optionally, users can specify
skewness and kurtosis values to generate non-normal data,
impose constraints on the estimation model, include meas-
urement error in the simulated data, estimate measurement
error variances (leading to the stable trait autoregressive
trait state model) and use bounded estimation (Rosseel,
2020), which is discussed in Section 5 “Extending the Power
Analysis”. Second, this input is used to compute the residual
variances and covariances, and the random intercept varian-
ces for the population model. Third, for each experimental
condition lavaan model syntax is generated to simulate
data and estimate the RI-CLPM. Fourth, this syntax is used
to repeatedly simulate data and estimate the RI-CLPM. For
this, powRICLPM uses the R-package lavaan on the
back-end (Rosseel 2012). Fifth, parameter estimates and

Figure 2. Overview of power analysis procedure used by powRICLPM.
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standard errors are collected, and summaries are saved in
an powRICLPM object. To quantify the uncertainty around
the simulated power, powRICLPM implements a non-para-
metric bootstrapping procedure of the results: It involves
taking B bootstrap samples (by default: 1000) of the signifi-
cance of the parameter estimates to create a bootstrap distri-
bution of the power for each experimental condition
(Constantin et al., in press). The 95% confidence intervals
of these bootstrap distributions represent the uncertainty
around the simulated power. Finally, the user can use vari-
ous methods such as summary(), give(), and plot()
to explore the results.

4.1. Illustrating Example

The illustrating example concerned determining the
required sample size and number of repeated measures for
detecting cross-lagged effects between self-alienation and
academic amotivation with a power of 0.80. In step 2.1, it
was argued that small cross-lagged effects of 0.10 and 0.15
were reasonable effect sizes to include in the power analysis
(based on J. Kim et al., 2018), yet large enough to be prac-
tically interesting. Furthermore, in step 1 it was determined
to include a range of proportions of between-unit variance
in the experimental conditions, namely 0.3, 0.5, and 0.7.
Continuing with this example, the experimental conditions
to be included in the power analysis are further defined by
selecting sample size candidates ranging from N¼ 200 to
N¼ 2000, increasing with steps of 100, and numbers of
repeated measures from T¼ 3 to T¼ 5. In total, this results
in 19 sample sizes � 3 numbers of repeated measures � 3
proportions of between-unit variance, totalling 171 experi-
mental conditions.

Following the suggestion in Section “Step 3–5: Generate
data, estimate RI-CLPM, repeat”, the analysis is partitioned
into a preliminary phase with reduced number of replica-
tions (R¼ 100), and a validation phase (R¼ 2000) with
only those experimental conditions that are close to the
desired results. The preliminary power analysis can be
run using

out_preliminary <- powRICLPM(

target_power ¼ 0.8,

search_lower ¼ 200,

search_upper ¼ 2000,

search_step ¼ 100,

time_points ¼ c(3, 4, 5),

ICC ¼ c(0.3, 0.5, 0.7),

RI_cor ¼ 0.35,

Phi ¼ Phi,

within_cor ¼ 0.26,

reps ¼ 100,

seed ¼ 123456

)

where target_power denotes the desired power level,
the search_� arguments define the lower bound, upper
bound, and step size of the range of sample sizes to include,
respectively, time_points denotes the numbers of time
points, ICC denotes the proportions of between-person
variance, RI_cor denotes the correlation between the ran-
dom intercept factors, Phi refers to a matrix of lagged
effects (see Appendix B), within_cor defines the correl-
ation between the within-components, reps sets the num-
ber of Monte Carlo replications, and seed sets a seed for
replicability. A visualization of the preliminary results across
all 171 experimental conditions, specifically the power to
detect a cross-lagged effect of 0.10 (standardized), can be
obtained using

plot(out_preliminary, parameter ¼ "wB2�wA1")

and is displayed in Figure 3. Details about the naming con-
ventions of parameters, ways to speed up the analysis using
multicore processing, and tracking the analysis progress can
be found in the package’s online documentation or in the
function documentation (accessible via ?powRICLPM()).

Inspecting the results using

summary(out_preliminary)

shows that there were no fatal errors or convergence
issues across any conditions in the preliminary power ana-
lysis. However, for the condition with 3 time points, 30%
between person variance, and sample sizes from 200 to 500,
there were 8, 5, 4, and 2 replications with inadmissible
results, respectively. Investigating this further for the case
with a sample size of 200, using

summary (out_preliminary, sample_size ¼ 200,
time_points ¼ 3, ICC ¼ 0.3)

shows that the problematic parameter is likely the vari-
ance of the random intercepts: The minimum estimate
(across all replications) is negative, which leads to the inad-
missible value warning. These inadmissible results might
lead to bias in other parameters as well, and hence it is
advisable to err on the side of caution while interpreting
results for these experimental conditions (De Jonckere &
Rosseel, 2022). A solution might be the use of bounded esti-
mation, which is introduced in Section 5.

While these are only the preliminary results, the influ-
ence of sample size, number of repeated measures, and
proportion of between-unit variance on power are already
clearly visible in Figure 3: Experimental conditions with a
higher number of repeated measures have more power to
detect the cross-lagged effect of 0.10, and similarly for con-
ditions with a relatively small proportion of stable,
between-unit variance in the observed data. Focusing on
the relation between number of time points and power, the
preliminary results suggest that with the current range of
sample sizes and proportions of between-unit variance, we
cannot achieve desirable power to detect a small cross-
lagged effect with 3 time points. Furthermore, the results
suggest that a sample size upwards of a 1000 is required in
the condition with the most advantageous proportion of
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between-unit variance (where proportion of between-unit
variance is 0.3). For conditions with a 0.7 proportion of
between-unit variance, sample sizes of approximately 1500
are needed with 5 repeated measures, whereas sample sizes
upwards of 1700 are needed for 4 repeated measures.
Based on these results, experimental conditions for valid-
ation are selected: The range of sample sizes is reduced to
900 to 1800, and experimental conditions with 3 repeated
measures are omitted, resulting in 10 sample sizes � 2
numbers of repeated measures � 3 proportions of
between-unit variance, totalling 60 experimental conditions
for validation.

The validation results (obtained by updating the argu-
ments of the R-code above) are displayed in Figure 4. The
error bars representing the uncertainty surrounding the
simulated power have shrunk considerably due to the
higher number of replications, leading to more stable
results. With equal proportions between- and within-unit
variance (the middle panel of Figure 4, a sample size of
approximately 1400 is needed for an RI-CLPM with 5
time points, and a sample size of 1600 is needed for RI-
CLPM’s with 4 time points, for detecting small cross-
lagged effects. Compare this to data containing higher
proportions of between-unit variance, where sample sizes
of 1600 or more and more than 2000 are required for RI-
CLPM’s with 5 and 4 time points, respectively. In

conditions with lower proportions of between-unit vari-
ance, a sample size of approximately 1100 is adequate for
detecting small cross-lagged effects with 5 repeated meas-
ures, whereas a sample size of 1300 is needed for the case
with 4 repeated measures.

5. Extending the Power Analysis

So far, the primary focus has been on a basic bivariate RI-
CLPM with experimental conditions varying over sample
size, number of repeated measures, and proportion of
between-unit variance. However, researchers might want to
include additional factors in their experimental conditions
to better align the power analysis to their research question
or empirical context. Below various extensions that have
been build into the powRICLPM package are discussed
briefly, specifically: (a) imposing various constraints over
time on the estimation model; (b) including measurement
error in the simulated data and in the estimation model; (c)
simulating non-normal data (i.e., skewness and kurtosis
Blanca et al., 2013); and (d) the use of bounded estimation
(Rosseel, 2020). Again, technical details on the implementa-
tion of these extensions, as well as example code, can be
found in the package’s online documentation and the func-
tion documentation. Extensions such as the multiple-group

Figure 3. Results of preliminary power analysis for the RI-CLPM, based on 100 replications, for a cross-lagged effect of 0.10 (standardized). The different panels dis-
play results for conditions with a 0.3, 0.5 and 0.7 proportion of between-unit variance, respectively. The vertical error bars represent the uncertainty around the
simulated power.
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RI-CLPM or the multiple-indicator RI-CLPM are not sup-
ported by the package (yet), but are briefly discussed in the
Discussion section. Moreover, note that the RI-CLPM is a
flexible model, and that further extensions of the model are
likely to be developed (e.g., Ozkok et al., 2022), each with
its own idiosyncrasies when it comes to power analysis.

5.1. Constraints over Time

Means, autoregressive and cross-lagged effects, and residual
variances and covariances can vary freely over time in the
RI-CLPM. This is useful if the process under study is char-
acterized by some kind of development, or if there are
unequal intervals between repeated measures. For example,
changes in the cross-lagged effects over time can be repre-
sentative of a maturation process in individuals: The influ-
ence of one variable becomes more or less important in
driving the other variable (and vice versa) as one gets older.
However, imposing constraints on some of the parameters
over time can be useful as well. It leads to more parsimoni-
ous results (e.g., a single set of lagged effects rather than
different lagged effects between each pair of adjacent
within-components), can reduce convergence issues, leads to
interesting statistical equivalences with other popular panel
models (for example, see Andersen, 2021; Hamaker, 2005),
and increases power for the constrained parameters. In the

proposed power analysis strategy above, the population
model used to simulate data implicitly imposes constraints
over time on the grand means l (fixed to 0), lagged effects,
and the residual variances and covariances. Essentially, the
population model implies a stationary process such that for
a person i the expected values EðXitÞ and EðYitÞ, variances
VarðXitÞ and VarðYitÞ, and autocovariances CovðXit , Xi, tþ1Þ
and CovðYit , Yi, tþ1Þ are independent of the time point t
(Hamaker & Dolan, 2009). This was done for didactic pur-
poses and ease of use of the power analysis strategy, as now
only a a single set of population values for the lagged effects
and within-component variance-covariance matrices has to
be found, which can already be challenging. In contrast, the
estimation model does not impose any of these constraints
and freely estimates these parameters at each time point
by default.

To accommodate researchers who choose to impose con-
straints over time on the estimation model, the
powRICLPM package includes various constraint specifica-
tions via the constraints argument. It allows users to
simulate the power for their specific RI-CLPM specification
of interest, including a) constraints on the lagged effects
over time with constraints ¼“lagged” b) constraints
on the residual variances and covariances over time with
constraints ¼“residuals”, or c) constraints on
both the lagged effects and residual variance and covariances

Figure 4. Results of the validation phase of the power analysis for the RI-CLPM, based on 2000 replications. The different panels display results for conditions with
a 0.3, 0.5 and 0.7 proportion of between-unit variance, respectively. The vertical error bars represent the uncertainty around the simulated power.
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over time with constraints ¼“within”. Note that
constraining the lagged effects to be time-invariant is only
advized when the time interval between repeated measures
is (approximately) equal (Gollob & Reichardt, 1987; Kuiper
& Ryan, 2018). Furthermore, constraints on the lagged
effects pertain only to the unstandardized effects, while the
standardized effects are likely to be time-varying still. This
is because standardization uses the variances of the within-
component predictor and outcome, and these are typically
not constrained to be the same over time, even with con-
straints on the residual variances and covariances. To
obtain both time-invariant unstandardized and standar-
dized effects, full stationarity constraints need to be
imposed, which can be done with constraints
¼“stationarity”. These constraints are a function of
the estimated autoregressive and cross-lagged effects,
residual covariances, and the covariance between the
within-components at the first wave. The derivations for
these constraints can be found in the online supplementary
materials of Mulder and Hamaker (2021).

Finally, full stationarity constraints have a long tradition
in the econometric literature on dynamic panel models
(for example, see Hamilton, 1994). Therefore, it is under-
standable that some researchers are interested in this spe-
cific specification of the RI-CLPM. However, researchers
should feel comfortable with the assumptions one makes �a
priori when incorporating these constraints in the power
analysis, as there can be various reasons why such con-
straints are not justified (e.g., varying time-intervals, mat-
uration processes, development, etc.). An alternative
approach is to not assume time-invariant lagged effects
and residual variances beforehand (as one does if these
constraints are included in the power analysis), but instead
test the tenability of them using the collected data (Mulder
& Hamaker, 2021).

5.2. Measurement Error

It is generally advisable to control for measurement error
when analysing psychological data, as it is widely accepted
that measurement error is likely to be present in psycho-
logical measurements (Savalei, 2019; Steyer et al., 1992).
While the RI-CLPM actually does not include measure-
ment error, it can in theory be added if four or more
waves of data are available. This would make the model
equivalent to the bivariate trait state error (TSE) model by
Kenny and Zautra (1995)—later referred to as the bivariate
stable trait autoregressive state trait (STARTS) model
(Kenny & Zautra, 2001)—without constraints over time
and with the stable trait factor loadings fixed to 1.
However, the STARTS model is notorious for being empir-
ically underidentified, commonly resulting in inadmissible
solutions when sample sizes are small, leading Cole et al.
(2005) to recommend a minimum of 8 waves of data
(given a sample size of 500) or more. Therefore, the inclu-
sion of measurement errors in the RI-CLPM can greatly
impact the recommended sample size and number of

repeated measures, not for reasons related to the power,
but for reasons of empirical identification.

Within the powRICLPM package, users can include
measurement error for the simulation of data (step 3) via
the reliability argument, and in the estimation model
(step 4) via the estimate_ME argument. The population
values for the measurement error variances are determined
by the package itself given the specified reliability of the
indicators, the specified proportion of between-unit vari-
ance, and the within-unit component variances of 1.

5.3. Non-Normally Distributed Data

The RI-CLPM is fitted in SEM software using maximum
likelihood estimation, thereby assuming multivariate nor-
mally distributed data. However, Micceri (1989) concludes
that asymmetry in empirical distributions appears to be
the rule for psychometric measurements rather than the
exception. This is problematic as non-normality of the
data can negatively impact the power of SEM models
(Yuan et al., 2015). Therefore, if researchers have reason
to believe that multivariate normality might not be a rea-
sonable assumption for the data they plan on collecting,
the power analysis should incorporate non-normal data as
well (Yuan et al., 2015). powRICLPM allows for incorpo-
rating data with various degrees of skewness and kurtosis
via the skewness and kurtosis arguments of the
powRICLPM() function.

5.4. Bounded Estimation

Nonconvergence of the estimation model is disadvanta-
geous for Monte Carlo power analyses because it reduces
the effective number of replications the power analysis
results are based on, and can slow down the analysis con-
siderably as the optimization algorithm takes a long time
searching for a solution that it ultimately does not find.
It typically occurs when sample sizes are small (e.g.,
smaller than 100) and when the model is complex (e.g.,
when measurement error is included). Therefore, De
Jonckere and Rosseel (2022) have implemented so-called
bounded estimation in the R-package lavaan, placing
bounds on the parameter space of the model. This pre-
vents the optimization algorithm from searching in the
completely wrong direction for parameters, for example,
for negative solutions to the (residual) variances of
latent variables.

Users of powRICLPM can make use of bounded esti-
mation by setting the bounded argument to TRUE.
Automatic wide bounds are then used as recommended
by De Jonckere and Rosseel (2022), implying that
(residual) variances (e.g., the random intercept variance,
and residual variances of the within-components) have a
small negative value as a lower bound, and the variances
of the observed variables they load on as an upper bound.
In the context of the RI-CLPM, the factor loadings are
(usually) fixed, and no bounds are included for these
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parameters. The lagged effects are theoretically infinite,
and hence there are no sensible bounds that can be placed
�a priori on these parameters.

6. Discussion

It is easy to underestimate the time and effort it can take to
set up and execute a valid power analysis (e.g., see Footnote
2 of Paxton et al., 2001). While the increased focus within
the scientific community on �a prior power analysis is helpful
for the progress of cumulative science, the design and exe-
cution of a valid power study is far from trivial for many
applied researchers (De Jonckere & Rosseel, 2022; Maxwell
et al., 2008). Nevertheless, investing time in a proper power
analysis that is tailored to the particularities of one’s study
is well-worth the effort, as it helps in the prevention of
underpowered studies and can reduce unnecessary demand
on study resources.

In this article, a 6-step Monte Carlo power analysis
strategy that is tailored to the random intercept cross-
lagged panel model was proposed and demonstrated. It
was created with usability for applied researchers in mind
and has been implemented in the R-package powRICLPM.
For a basic power analysis, four sets of population param-
eter values are required as input, namely autoregressive
and cross-lagged effects, variances and covariances for the
within-unit components, the proportion of between-unit
variance, and the correlation between the random inter-
cepts. Choices for these population parameter values
should be based on expert opinion or literature, or be
grounded in theory. The powRICLPM package then com-
putes the remaining population parameter values (e.g., the
residual variances and covariances) and automates the pro-
cess of repeatedly simulating data and estimating the
model. Users can use the summary(), give(), and
plot() functions to inspect the results, including conver-
gence rates, mean square error, coverage rate, and power,
among other metrics, across experimental conditions.
Currently, the basic power analysis can be extended to
include constraints over time on the estimation model,
measurement error (i.e., the STARTS model), non-normal
data, and bounded estimation.

6.1 Limitations

Step 2 of the strategy involves choosing population param-
eter values for the lagged effects and correlations between
the within-unit components. While it is recommended to
base these on theory and literature, this does not imply that
any set of population parameters goes. There is a mathemat-
ical restriction on the population model-implied variance-
covariance matrix that adds a degree of difficulty to the
determination of these population parameter values, and
introduces an element of trial-and-error to this step.
Specifically, there are two restrictions that impact the popu-
lation parameter values that users can specify. First, popula-
tion values for the lagged effects should be chosen such that
the data that are generated from these form a stable

stationary system.2 Second, the correlation matrix of the
within-components is required to be positive definite in
order to generate data from it.3 The powRICLPM package
automatically checks if these restrictions are met, and
throws an error otherwise. In that case, researchers should
adjust the population parameter values for the lagged effects
and correlations between the within-unit components
accordingly, which often implies that these should be
made smaller.

Furthermore, within a power analysis context one would
expect the population model and the estimation model to
be the same (i.e., it is assumed that the estimation model is
actually the data generating model). However, as discussed
in the Section “Constraints over time”, there is a discrep-
ancy in the proposed power analysis strategy by design
between the population model used to simulate the data,
and the model that is estimated. The population model is
based on full stationarity constraints, affecting the lagged
effects, residual variances and covariances, and grand means,
while the estimated model allows all parameters to be freely
estimated over time. This setup was chosen for reasons of
usability, without compromising the validity of the power
analysis results. It ensures that users need to specify only a
single set of lagged parameters and a single correlation for
the within-components, which can be quite challenging
already. It also implies that the power analysis results are
conservative for situations where these constraints are valid,
in the sense that a higher power would be achieved if con-
straints over time had been imposed on the estimation
model. Further note that this difference between data gener-
ating mechanism and estimation model can be overruled
using the constraints argument.

Moreover, it is possible that small sample sizes (<100)
not only result in low statistical power, but also in bias in
the parameter estimates. This is a phenomenon related to
the large sample properties of maximum likelihood estima-
tion, something that has been repeatedly reported on in the
SEM literature (cf. De Jonckere & Rosseel, 2022; Rosseel,
2020; Wolf et al., 2013). The effect of small samples and a
limited number of repeated measures on bias in RI-CLPM
parameter estimates was not investigated here. However, it
is advisable to check that bias is not a limiting factor (rather
than power) for sample size recommendations when per-
forming a power analysis using such limited sample sizes.
For this, the bias as reported by powRICLPM package can
be used.

A final limitation to take into account is that the sample
size recommendations following the illustrating example
assume a complete dataset, multivariate normally-distributed
data, and no measurement error. However, missing data
often do pose a problem in empirical datasets (especially in
social sciences, it is nearly inevitable; Van Buuren, 2018, p.
7), observed data can show considerable deviations from
normality (Blanca et al., 2013; Micceri, 1989), and many

2In technical terms, the eigenvalues of the matrix of lagged effects U should
be within unit-circle.
3In technical terms, the eigenvalues of the variance-covariance matrix of the
within-unit residuals should be positive.
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(indirect) psychological and behavioural measures are likely
to include measurement error. Therefore, the conclusions
from this illustrating example should be considered as lower
bounds, and in practice greater sample sizes might be
required to counter the negative effects of these suboptimal
conditions on the power.

6.2 Comparison to Other Packages

Many different software programs have been developed for
doing power analyses for SEM. They can be roughly catego-
rized based on whether the power analysis is analytical or
simulation-based, the price (free or paid option), and their
generality (focusing on SEM models in general, or specific
to a particular model). Below the focus is on some software
packages that can be useful alternatives for RI-CLPM power
analyses. For a more extensive overview of software pack-
ages available for Monte Carlo simulation studies for SEM,
the reader is referred to Lee (2015).

The software package Mplus by L. K. Muth�en and
Muth�en (2017) is a latent variable modeling program with
a wide range of analysis options including Monte Carlo
simulation analyses. The main advantage compared to the
powRICLPM package is that it is much faster: Although
no formal comparison of computation time was performed,
from personal experiences a Monte Carlo power analysis
for the RI-CLPM with a single experimental condition can
take up to 10minutes using powRICLPM, whereas it takes
less than a minute using Mplus.4 Disadvantages of Mplus
are that it is a paid option, does not run multiple experi-
mental conditions simultaneously, and is not tailored to
the RI-CLPM. As such, more steps need to be taken by the
user to specify the power analysis for the RI-CLPM,
including, for example, computing the residual variances
and covariance of the within-unit components. To accom-
modate users of Mplus, the powRICLPM includes the
powRICLPM_Mplus() function to generate Mplus syn-
tax for RI-CLPM power analysis (for multiple experimental
conditions simultaneously), which can be run subsequently
in Mplus itself.

Various analytical power analysis options for SEM are
available as well, including WebPower by Zhang and Liu
(2018) or functions within the semTools R-package by
Jorgensen et al. (2021). These options are useful, especially
for the multiple group extension of the RI-CLPM (Mulder
& Hamaker, 2021). The multiple group RI-CLPM is based
on fitting a multiple group version of the RI-CLPM both
with and without constraints across groups (e.g., the con-
straint of equal lagged effects), and comparing the model fit
to determine whether the imposed constraints are tenable.
Power thus refers to the probability of rejecting a bad-fitting
model due to untenable across-group constraints in this
context, rather than rejecting the null-hypothesis for a spe-
cific parameter (Wang & Rhemtulla, 2021). The effect size
then refers to how much worse the constrained model fits

the data compared to the more general model (with less, or
no across-group constraints). Analytic solutions, like the
likelihood ratio test by Satorra and Saris (1985) or power
analyses based on the RMSEA by MacCallum et al. (1996),
are more efficient to use for these types of power analyses
than computationally intensive Monte Carlo simulation
studies. For example, Jak et al. (2021) describes how the
SSpower() function from the R-package semTools can
be used for a multi-group SEM power analysis. It requires
users to provide a SEM model without, and a model with (a
single, or multiple) equality constraints across groups. The
SSpower() function then performs a chi-square-based
power analysis across a range of sample sizes to assess the
tenability of the constraints (Jorgensen et al., 2021; Satorra
& Saris, 1985).

7. Conclusion

In conclusion, this paper proposes a strategy for performing
a power analysis specifically tailored to the particularities of
the RI-CLPM. It is implemented in the R-package
powRICLPM, which is designed to be as user-friendly as
possible for applied researchers, and accommodates various
extensions. Together, this paper and the R-package provide
researchers with the resources to design a power analysis
that produces valid recommendations for planning future
research involving the RI-CLPM.
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Appendix A

Variance of Within-Components

The variance for the within-component of X at wave 2, Var½WX, 2�, can
be expressed as

Var½WX, 2� ¼ Var½a2WX, 1 þ b2WY, 1 þ u1�,
¼ Var½a2WX, 1� þ Var½b2WY, 1� þ 2a2b2Cov½WX, 1,WY, 1� þ Var½u1�,
¼ a22Var½WX, 1� þ b22Var½WY, 1� þ 2a2b2Cov½WX, 1,WY, 1� þ Var½u1�,
¼ a22 þ b22 þ 2a2b2Cov½WX, 1,WY, 1� þ r2

u,

(5)

which shows that it is a function of the lagged effects, a22 þ b22, the
covariance between the predictors at the previous wave,
2a2b2Cov½WX, 1 ,WY, 1�, and the residual variance, r2

u: This logic simi-
larly applies to the variance of the within-component of academic
amotivation.

Appendix B

Residual Variances and co-Variances at Wave 2
and Further

Let U be a square matrix of lagged effects with the diagonal elements
representing autoregressive effects, and off-diagonal elements cross-
lagged effects. Collecting these population parameter values for the
illustrating example gives

U ¼ 0:20 0:15
0:10 0:30

� �
:

Furthermore, let R be a variance-covariance matrix for the within-
components at each time point. For the illustrating example, this
results in

R ¼ 1 0:26
0:26 1

� �

with the diagonal elements representing the variances of the within-
components, and the off-diagonal elements representing the correlation
between the within-components.

C.-J. Kim and Nelson (1999, p. 27) present an expression for the
unconditional covariance matrix of a stationary process as a function
of the lagged effects and the residual variance covariance matrix.
Rewriting this equation, the residual variances and covariances can be
expressed as

vecðWÞ ¼ ðI�U� UÞvecðRÞ (6)

with W the residual variance-covariance matrix, I the identify matrix,
and vecð�Þ denoting the operation of putting the elements of a matrix
into a column. Applying Equation (6) to the population parameter val-
ues of the illustrating example result in

W ¼ 0:9219 0:1755
0:1755 0:8844

� �

where the diagonal elements represent the residual variances, and the
off-diagonal represent the residual covariances needed to get within-
components with a variance of 1.
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