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ABSTRACT
The random intercept cross-lagged panel model (RI-CLPM) is rapidly gaining popularity in psychology and 
related fields as a structural equation modeling (SEM) approach to longitudinal data. It decomposes 
observed scores into within-unit dynamics and stable, between-unit differences. This paper discusses 
three extensions of the RI-CLPM that researchers may be interested in, but are unsure of how to 
accomplish: (a) including stable, person-level characteristics as predictors and/or outcomes; (b) specifying 
a multiple-group version; and (c) including multiple indicators. For each extension, we discuss which 
models need to be run in order to investigate underlying assumptions, and we demonstrate the various 
modeling options using a motivating example. We provide fully annotated code for lavaan (R-package) 
and Mplus on an accompanying website.
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The random intercept cross-lagged panel model (RI-CLPM) 
proposed by Hamaker et al. (2015) is an extension of the 
traditional cross-lagged panel model (CLPM). It was intro-
duced to account for stable, trait-like differences between 
units (e.g., individuals, dyads, families, etc.), such that the 
lagged relations pertain exclusively to within-unit 
fluctuations.1 The idea that we should decompose longitudinal 
data into stable, between-unit differences versus temporal, 
within-unit dynamics is closely linked to the multilevel litera-
ture on cluster-mean centering (Bolger & Laurenceau, 2013; 
Enders & Tofighi, 2007; Kievit et al., 2013; Kreft et al., 1995; 
Mundlak, 1978; Neuhaus & Kalbfleisch, 1998; Nezlek, 2001; 
Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). 
Alternatively, it can also be linked to the discussion in panel 
research on the need to account for unobserved heterogeneity in 
longitudinal data (Allison et al., 2017; Bianconcini & Bollen, 
2018; Bollen & Brand, 2010; Bou & Satorra, 2018; Finkel, 1995; 
Hamaker & Muthén, 2020; Liker et al., 1985; Ousey et al., 2011; 
Wooldridge, 2002, 2013). A detailed discussion of how other 
common panel models account for unobserved heterogeneity 
(as well as for measurement error and developmental trajec-
tories) is provided by Usami et al. (2019), Zyphur et al. (2019a), 
and Zyphur et al. (2019b).

The appeal of the RI-CLPM can be attributed to three 
factors. First, the basic idea that one needs to decompose 
the observed variance into two sources resonates with 
a concern many researchers have had about the traditional 
CLPM (Keijsers, 2016). In fact, there have been numerous 
other proposals aiming to do exactly this (e.g., Allison 

et al., 2017; Bianconcini & Bollen, 2018; Kenny & Zautra, 
1995; Ormel et al., 2002; Ormel & Schaufeli, 1991; Ousey 
et al., 2011). Second, the model can be applied if one has 
three occasions of data or more, using any structural equa-
tion modeling (SEM) software package, which makes the 
approach broadly applicable and easy to implement. Third, 
the RI-CLPM tends to fit empirical data (much) better than 
the traditional CLPM, as is corroborated by empirical work 
of, for instance, Borghuis et al. (2020), R. A. Burns et al. 
(2019), and Keijsers (2016). The second-order lagged rela-
tions that are often needed to get a CLPM to have an 
acceptable fit are typically not needed in the RI-CLPM, 
because the long-run, trait-like stability is now captured 
by the random intercepts instead of by the second-order 
lagged relations.

Given the growing popularity of the RI-CLPM, it is not 
surprising that researchers are interested in how they can 
adapt the basic model to accommodate their particular data 
and research interests. Examples of this can be found in the 
Mplus Discussion Board thread on the RI-CLPM,2 the Lavaan 
forum,3 and RI-CLPM-related posts on SEMNET.4 Some of the 
most frequently asked questions are how to extend the model 
by (a) including person-level characteristics (e.g., social- 
economic status, personality factors, age, health) as 
a predictor or outcome variable, (b) performing a multiple- 
group version of the model to investigate whether lagged 
relationships are different across groups, and (c) using multiple 
indicators for latent variables in the model. The purpose of the 
current paper is to elaborate on these extensions and help 
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researchers navigate the different modeling options and 
assumptions.

This paper is organized as follows. In the first section, we 
begin with presenting the RI-CLPM, and discuss how it is related 
to the traditional CLPM. In the following three sections we 
discuss the three different extensions described above and we 
will focus on the modeling options available. To facilitate the 
explanation of the model and its results we will use a motivating 
example about the reciprocal effects of sleep problems and anxi-
ety in young adolescents based on Narmandakh et al. (2020). 
Furthermore, to allow the reader to obtain hands-on experience 
with this modeling approach, we provide a simulated data set of 
our motivating example, as well as annotated lavaan code and 
Mplus syntax (see: jeroendmulder.github.io/RI-CLPM).

The RI-CLPM and the traditional CLPM

Below, we begin with discussing how the RI-CLPM is 
build up. Subsequently, we discuss diverse constraints 
over time that can be imposed or relaxed. We end by 
briefly discussing how this model is related to the tradi-
tional CLPM. While the terminology used here is clearly 
inspired by the multilevel literature (where there is 
a between-cluster level and a within-cluster level), the RI- 
CLPM is estimated in wide-format using structural 

equation modeling (SEM), rather than in long-format 
with multilevel modeling. Throughout we make use of 
a simulated data set that was motivated by Narmandakh 
et al. (2020). In their study, five waves of data were 
obtained from 1189 adolescents on their sleep problems 
and anxiety during the past 15 years.

Building up the basic RI-CLPM

To fit an RI-CLPM, we need to decompose the observed 
scores into three components: grand means, stable between 
components, and fluctuating within components. This 
decomposition is illustrated in the upper panel of Figure 1. 
Let Sit and Ait represent the observed scores on sleep pro-
blems and anxiety for person i at occasion t, respectively. The 
first components are the grand means, which are the means 
over all units per occasion t, and represented by μt for sleep 
problems and πt for anxiety. These grand means may be time- 
varying, or may be fixed to be invariant over time. Second, the 
between components, indicated by the letter B, are the ran-
dom intercepts: BSi for sleep problems and BAi for anxiety. 
They capture a unit’s time-invariant deviation from the grand 
means and thus represent the stable differences between units. 
The random intercepts are specified in SEM software by 
creating a latent variable with the repeated measures as its 

Figure 1. Graphic representations of the random intercept cross-lagged panel model (RI-CLPM) and the traditional cross-lagged panel model (CLPM). Sit denotes the 
observed sleep problems and Ait denotes the observed anxiety of unit i at occasion t.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 639

jeroendmulder.github.io/RI-CLPM


indicators, and fixing all the factor loadings to 1. Third, the 
within components, indicated by the letter W, are the differ-
ences between a units observed measurements and the unit’s 
expected score based on the grand means and its random 
intercepts. WSit and WAit thus represent the within compo-
nents of sleep problems and anxiety, respectively. We create 
these components in SEM software by specifying a latent 
variable for each measurement and constraining its measure-
ment error variances to 0. As a result, we have Sit ¼

μt þ BSi þWSit and Ait ¼ πt þ BAi þWAit .
Next, we specify the structural relations between the within 

components. The autoregressive effects (i.e., αt from WSi t� 1 to 
WSit and δt from WAi t� 1 to WAit) represent the within-person 
carry-over effects. If αt is positive, this implies that an individual 
who experiences elevated sleep problems relative to his/her own 
expected score, is likely to experience elevated sleep problems 
relative to his/her own expected score at the next occasion as 
well. The same logic applies to the interpretation of δt . For this 
reason, the within-person autoregressive effects are sometimes 
referred to as inertia (i.e., the tendency to not move; see Suls 
et al., 1998). The cross-lagged effects in the model represent the 
spill-over of the state in one domain into the state of another 
domain. Here, βt represents the effect of WSi t� 1 to WAit and γt 
the effect of WAi t� 1 to WSit . A positive βt implies that a positive 
(negative) deviation from an individual’s expected level of sleep 
problems will likely be followed by a positive (negative) deviation 
in the individual’s expected level of anxiety at the next occasion in 
the same direction. The same logic applies to γt .

Finally, we need to include covariances for both the within 
and between components of the model. For the within part, we 
specify that the components at occasion 1 and the within- 
person residuals at all subsequent occasions are correlated 
within each occasion. For the between part, we specify that 
the random intercepts are correlated. We are not including 
covariances between the within-person components at the 
first occasion and the random intercepts because typically the 
observations have started at an arbitrary time point in an 
ongoing process and there is no reason to assume that the 
within components at the first occasion are correlated to the 
random intercepts.5

Applying this model to our simulated example data, we find 
that both random intercepts have significant variance, which 
implies that there are stable, trait-like differences between 
persons on sleep problems and anxiety. Moreover, we find 
a significant positive covariance between the random intercepts 
of :01 with SE ¼ :001 (the correlation is :59, SE ¼ :050), sug-
gesting that individuals who have more sleep problems, in 
general, are also more anxious in general.

If, in contrast to our findings here, the variance of a random 
intercept does not significantly differ from 0, this means that 
there are little to no stable between-unit differences, and that 
each unit fluctuates around the same grand means over time. 
Including a random intercept in the model can then be 
regarded as redundant; such a model would be too complex 

for the data. In that case, one can choose to either fix the non- 
significant variance (and all the covariances between this ran-
dom intercept and the other intercepts) to 0, or simply remove 
the random intercept from the model and include lagged- 
relations between the observed variables instead of between 
the within-unit components. These two solutions are statisti-
cally equivalent and will lead to the same lagged-parameter 
estimates and model fit. Note that it is possible to have a model 
in which one variable needs to be decomposed into a between- 
unit and a within-unit part, while the other variable does not 
require such a decomposition.

Looking at the within part of the model we find the 
following standardized autoregressive effects for sleep pro-
blems, α2 ¼ :29 (SE ¼ :034), α3 ¼ :24 (SE ¼ :036), α4 ¼ :27 
(SE ¼ :036), α5 ¼ :29 (SE ¼ :035), and for anxiety, δ2 ¼

:004 (SE ¼ :045), δ3 ¼ :25 (SE ¼ :036), δ4 ¼ :29 
(SE ¼ :033), δ5 ¼ :40 (SE ¼ :030). There are also significant 
cross-lagged effects of sleep problems to anxiety, β2 ¼ :15 
(SE ¼ :039), β3 ¼ :10 (SE ¼ :035), β4 ¼ :11 (SE ¼ :034), 
β5 ¼ :08 (SE ¼ :031), which means that individuals with 
relatively little sleep problems (relative to an individual’s 
own mean) will likely experience relatively little anxiety at 
the next occasion. However, none of the cross-lagged effects 
from anxiety to sleep problems are significant, which means 
that an individual’s temporary elevated or damped amount 
of sleep problems does not depend on that individual’s 
temporary level of anxiety at the previous occasion.

Imposing constraints over time

To test specific hypotheses, researchers can decide to impose 
constraints on the model and test the tenability of these con-
straints. This can be done by comparing the fit of a (nested) 
model with constraints to the fit of the more general model 
using a chi-square difference test (Δχ2); if the constrained 
model fits the data significantly worse, the imposed constraints 
are untenable. Alternatively, one can use the AIC or BIC as 
measures of model fit to compare both non-nested and nested 
models, where the model with the lower AIC or BIC should be 
preferred.

The use of the chi-square difference test is wide-spread in 
the SEM community, but a few cautionary notes are in order. 
First, parameters should only be constrained if the constraints 
make theoretical sense, and not solely because it leads to 
a more parsimonious model. Second, failing to detect 
a significantly worse fitting model in a sequence of chi-square 
difference tests does not imply that the constrained model 
represents the population well. It is possible that the uncon-
strained base model was misspecified in the first place and this 
misspecification will carry on into the constrained model. In 
that case, the chi-square difference test is unable to control for 
Type I error rates and retain adequate power (Yuan & Bentler, 
2004). Careful consideration should always be given to the fit of 

5This is in contrast to other SEM approaches that combine lagged relations with stable components, such as the one presented by Allison et al. (2017) and Bianconcini 
and Bollen (2018). The defining difference between these approaches and the RI-CLPM discussed here is whether or not the lagged relations are modeled between the 
observed variables, or between the within-person components. For more details, see Usami et al. (2019).
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the models themselves by looking at a variety of model fit 
indices.

In the RI-CLPM, there are several constraints over time that 
can be added. We discuss two common ones here. First, we 
may consider testing if the lagged regression coefficients are 
time-invariant. This can be done by comparing the fit of 
a model with constrained regression coefficients (over time), 
with the fit of a model where these parameters are freely 
estimated (i.e., the unconstrained model). If this chi-square 
difference test is non-significant, this implies the constraints 
are tenable and the dynamics of the process are time-invariant. 
If the constraints are not tenable, this could be indicative of 
some kind of developmental process taking place during the 
time span covered by the study.

In this context, it is important to realize that the lagged 
regression coefficients depend critically on the time inter-
val between the repeated measures. Hence, constraining 
the lagged parameters to be invariant across consecutive 
waves only makes sense when the time interval between 
the occasions is (approximately) equal (Gollob & 
Reichardt, 1987; Kuiper & Ryan, 2018; Voelkle et al., 
2012). If the time intervals between subsequent occasions 
vary, we are estimating different autoregressive and cross- 
lagged effects between each pair of adjacent measure-
ments. In such a situation, constraining the lagged regres-
sion coefficients leads to an uninterpretable blend of 
different lagged relationships. Furthermore, even when 
the lagged parameters are invariant over time, this will 
typically not be true for the standardized lagged para-
meters, because these are a function of the within-unit 
variance of the predictor and the within-unit variance of 
the outcome. As these variances are typically not (con-
strained to be) equal across the occasions (which is com-
plicated due to the recursiveness in the model), the 
standardized lagged parameters can differ even if the 
unstandardized lagged parameters are constrained to be 
the same (Hamaker et al., 2015).

To test if the lagged relations in our sleep problems and 
anxiety example are invariant over time, we fit a model 
with constrained lagged regression coefficients and find 
χ2 ¼ 90:97 with 33 degrees of freedom. The unconstrained 
model (the basic RI-CLPM fitted before) has χ2 ¼ 25:81 
with 21 degrees of freedom. The chi-square difference test 
of these two nested models is thus Δχ2ð12Þ ¼ 65:16, with 
p< :001. Hence, constraining the lagged effects to be the 
same over time results in a significantly worse model fit. 
We, therefore, conclude that the constraints are untenable 
and that there appears to be a change in within-person 
dynamics over time. Upon closer inspection of the auto-
regressive effects of anxiety δt in the unconstrained model, 
this makes sense: These estimates increase with each sub-
sequent occasion, from :004 to :40.

Second, we may investigate whether the grand means, μt 
and πt , are invariant over time. This can be done by constrain-
ing the means to be the same across occasions and performing 

the chi-square difference test to determine whether this con-
straint can be imposed. If this is the case, this implies we are 
dealing with a construct that is stable at the population level for 
the duration of the study. In contrast, if the grand means 
cannot be constrained to be invariant over time, this implies 
that on average there is some change in this variable over time, 
which may reflect some occasion-specific effect, or 
a developmental trend. By allowing the means to freely vary 
over time, we account for such average changes over time. In 
our example a comparison of the constrained and the uncon-
strained models yields a chi-square difference test of 
Δχ2ð8Þ ¼ 434:20, p< :001, which implies that the constraints 
are untenable and that the grand means vary over time.

Alternatively, one can choose to relax; instead, of impose, 
constraints over time to allow for a more flexible and better 
fitting model. The RI-CLPM is based on the assumption that 
the random intercepts have the exact same influence on the 
observed variables at each occasion, which is reflected by the 
factor loadings that are all constrained to be 1 over time. 
However, researchers may want to test this, which can be 
done by comparing the model with these constrained factor 
loadings to a model in which the factor loadings are estimated 
freely; the latter model implies that there are stable, trait-like 
differences between individuals, but the size of these differences 
can change over time. The between components are then no 
longer random intercepts, but can be interpreted as traits. To 
fit a model with freely estimated factor loadings, at least four 
occasions of data are needed; in contrast, with the fixed factor 
loadings, the model is already identified with only three waves 
of data.

Relatedness to the traditional CLPM

If we constrain the variances of all random intercepts (and 
their covariance) in the RI-CLPM to zero, we obtain a model 
that is nested under the RI-CLPM, and no longer accounts for 
stable between-unit differences. This model is actually statisti-
cally equivalent to the traditional CLPM (represented in the 
bottom panel of Figure 1), which implies that we can compare 
these two models using a chi-square difference test.6

In comparison to the traditional CLPM, the RI-CLPM 
often leads to autoregressive parameters that are closer to 
zero with larger standard errors. As a result, the autore-
gressive parameters that are significantly different from 
zero in the CLPM, may not be significant in the RI- 
CLPM. This has led some to speculate that the reliability 
of the within-unit components in the RI-CLPM is low. 
However, it is important to realize that the autoregressive 
parameters represent quite different phenomena in these 
two models. In the traditional CLPM, the autoregressive 
parameter captures the stability of the rank-order of indi-
viduals from one occasion to the next. It is closely related 
to the idea of test–retest reliability, which uses the auto-
correlation as a measure of the reliability of a time- 

6Actually, it requires a chi-bar-square test, as it is based on constraining two of the parameters on the bound of the parameter space, see Stoel et al. (2006). The regular 
chi-square test is too strict, which means that if it is significant, the chi-bar-square test would also be significant, while the reverse is not true.
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invariant, trait-like construct. In the RI-CLPM however, 
the trait-like features are captured by the random inter-
cepts, such that the autoregressive parameters are not 
there to capture rank-order stability due to a trait, but to 
account for additional moment-to-moment stability (i.e., 
inertia or carry-over) of the within-unit fluctuations over 
time. Hence, in the RI-CLPM, the autoregressive para-
meters should not be considered as measures of reliability, 
because reliability and stability do not coincide for state- 
like concepts (Hertzog & Nesselroade, 1987).

With respect to the cross-lagged parameters, there can be 
a number of differences between the two models. As discussed 
in the original paper by Hamaker et al. (2015), we may find 
cross-lagged paths in the CLPM that seize to exist in the RI- 
CLPM or vice versa, the standardized absolute values of the 
cross-lagged parameters may lead to a different ordering, and 
even the sign of a cross-lagged path may change. The latter 
result has been corroborated in empirical research by Dietvorst 
et al. (2018). The extent to which results change depends on 
various factors, including the relative contributions of the 
within-unit and the between-unit components to the total 
variance. For instance, when the relative contribution of the 

between-unit components is small, the lagged parameters of 
the two models will be quite similar.

Furthermore, Dormann and Griffin (2015) have recently 
argued that many of our conventional panel studies are probably 
based on intervals that are too large to capture the underlying 
within-unit dynamic relationships. Instead, the lagged effects that 
are found with the CLPM might result from stable between-unit 
differences rather than dynamic within-unit relations. This would 
imply that many of the significant results that are obtained with 
the CLPM, will not be replicated when using an RI-CLPM because 
the stable between-unit differences, captured by first and second- 
order lagged effects in the CLPM, are now captured by the ran-
dom intercepts in the RI-CLPM (Keijsers, 2016). Yet, the extent to 
which the results from the traditional CLPM and the RI-CLPM 
will differ cannot be predicted; the discrepancy or similarity will 
have to be established empirically through fitting both models to 
the data and comparing the results.

Conclusion

We have provided a brief introduction to the modeling and 
reasoning behind the RI-CLPM, and illustrated the basic steps 

Figure 2. Two options for including a between-level predictor: In the top left, Ni influences the observed variables directly; in the top right, this occurs indirectly through 
the random intercepts. The model in the top right is nested under the model in the top left (fixing the regression coefficients to be identical over time results in a version 
that is equivalent to the model on the right). Also, two options for including a between-level outcome: In the lower-left, Li is explained by the random intercepts which 
includes only between variance; in the lower right, panel the distal outcome is regressed on both the random intercepts and the within components such that we use 
both between- and within-level variance to predict Li . These two models are not nested.
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researchers should consider when using this modeling approach. 
For more details on how this model is related to other long-
itudinal SEM approaches, the reader is referred to Usami et al. 
(2019) and Hamaker et al. (2015). In the remainder of this paper, 
we discuss several extensions of the basic RI-CLPM.

Extension 1: Including time-invariant predictors and 
outcomes

If we have obtained certain time-invariant person characteristics 
prior to the repeated measures — such as social-economic status, 
personality, age, or gender — we may want to include these as 
predictors in the RI-CLPM. A question that arises in this context is 
whether these variables should be used to predict the observed 
variables or the random intercepts. These two options for an 
observed predictor variable are represented in the top row of 
Figure 2. In this section, we discuss both options in more detail 
and show how they are related. Additionally, we discuss how one 
may include time-invariant distal outcomes — such as later educa-
tional level, life satisfaction, or depression — in the RI-CLPM.

It is important to realize that adding variables to our model 
changes the covariance structure that is being analyzed, and in 
SEM we can only compare models that are based on the same set 
of variables. As a result, a model with a time-invariant predictor 
is not comparable to a model that excludes it. Likewise, it is 
possible to have a well-fitting model, which is then extended with 
a predictor that proves significant, while this extended model no 
longer fits. The reason for this is that the two models are based 
on different covariance and mean structures.

Including a time-invariant predictor

Let Ni be a measure of an individual’s neuroticism, which we 
want to include as a predictor of the observed variables Sit and 
Ait , as represented in the top left panel of Figure 2. This allows 
the effect of neuroticism on sleep problems and the effect of 
neuroticism on anxiety to be different at each occasion t. In the 
particular case that Ni is a dummy variable (as in our example 
here), the regression coefficients can be interpreted as mean 
differences between the group represented by the dummy 
variable, and the reference group (represented by zero scores 
on all dummy variables). We include a dummy for individuals 
who are high on neuroticism, which results in significant 
positive effects of neuroticism on both sleep problems and 
anxiety. This suggests that highly neurotic adolescents experi-
ence more sleep problems and have more anxiety symptoms 
than adolescents in the low-neuroticism group, and this result 
holds for all occasions. As a restricted version of this model, we 
can constrain the effects of neuroticism on sleep problems and 
anxiety to be the same at each occasion t. Because these models 
are nested, we can perform a chi-square difference test to 
determine whether these constraints can be imposed.

The latter constrained model is statistically equivalent to 
a model in which the random intercepts, rather than the 
observed variables, are regressed on Ni (represented in the 

top right panel of Figure 2). This is only the case however if 
the factor loadings of the random intercepts are all fixed at 1 
like in the basic RI-CLPM discussed before. Imposing the 
constraints leads to a chi-square difference test of Δχ2ð8Þ ¼
8:91 with p ¼ :350, which implies that the effects of neuroti-
cism on the random intercepts of sleep problems and anxiety 
are time-invariant: the estimated standardized effects are :27 
(SE ¼ :040) and :24 (SE ¼ :035), respectively. Therefore, we 
conclude that high-neuroticism adolescents experience more 
sleep problems and anxiety in general than low-neuroticism 
individuals.

Including a time-invariant outcome

Suppose we have measured later life satisfaction Li after the 
repeated measures, and we want to predict this using sleep 
problems and anxiety. We can do this by regressing Li either 
on the random intercepts BSi and BAi, the within-person 
fluctuations WSit and WAit , or on the observed variables Sit 
and Ait . The first two options are represented in the bottom 
panels of Figure 2. From a substantive point of view, regressing 
life satisfaction on the random intercepts implies that temporal 
within-person fluctuations in sleep problems and anxiety, WSit 
and WAit , are not informative for predicting later life satisfac-
tion as the random intercepts only contain stable between 
person information. This assumption is defendable as a later 
educational level is a time-invariant outcome and therefore 
belongs to the between part of the model.

Alternatively, one can decide to regress the outcome on 
both the random intercepts and the temporal deviations. The 
regression on the random intercepts then represents the pre-
dictive value of between components net the predictive value of 
the within part, and the regression on the temporal deviations 
represents the predictive value of the within components net 
the predictive value of the between part. As such, we separate 
the total predictive power of our variables into a uniquely 
between and uniquely within component. The decision to use 
only between-unit variance, or both within- and between-unit 
variance to predict the outcome, should ideally be based on 
theoretical grounds. However, if this is something that the 
researcher explicitly wants to test one can fit the above two 
models and compare them using a chi-square difference test 
where the model with the outcome regressed on the random 
intercepts is nested under the current model.

A third option is regressing Li on the observed variables, 
which implies that one assumes that both between-person 
variance that comes from the random intercepts, and tempor-
ary, within-person variance that comes from the within-person 
components, are informative about later depression. However, 
we find this modeling option less defendable as it again blends 
stable between-effects and fluctuating within-effects, an issue 
that the RI-CLPM aims to address in the first place. By regres-
sing the outcome on both the within-components and 
between-components separately, researchers can check if 
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Figure 3. Two options for incorporating multiple indicators in a RI-CLPM. Top panel shows a model with indicator-specific random intercepts that capture trait-like 
differences between units, and occasion-specific factors that capture the within-unit dynamics. Bottom panel shows a model in which there is a latent variable per 
occasion, which contains a trait-like part that is captured by the higher-order random intercepts, and a state-like part that is used to capture the dynamics over time.
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within variance provides additional predictive value over the 
between variance.

Including both a predictor and outcome

We can also consider including both neuroticism as a predictor 
and later life satisfaction as an outcome at the between level. If 
this is all specified at the between level, this implies neuroticism 
has an indirect effect on life satisfaction through the random 
intercepts and this can be considered as a case of mediation at 
the between level. We can also include the direct effect of 
neuroticism on life satisfaction to allow for partial mediation.

Extension 2: The multiple group RI-CLPM

In the previous section, we used a dummy variable for neuroti-
cism as a predictor in our model, which allowed us to investigate 
whether there are mean differences between the group high on 
neuroticism, and the group low on neuroticism. Alternatively, 
one can use such a categorical variable as a grouping variable in 
multiple group analysis (e.g., Vangeel et al., 2018; Van Lissa, 
Keizer, Lier, Van Meeus, and Branje, 2019). This approach 
implies that not only the means can differ across the groups (as 
is the case when including dummy variables as predictors of the 
random intercepts or the observed variables, as described in the 
previous section), but also the lagged regression coefficients, the 
(residual) variances, and the (residual) covariances.

Group differences in lagged regression coefficients can be 
thought of as moderation or interaction effects, and may, there-
fore, be of specific interest to researchers. This can be investi-
gated by comparing a multiple group version of the RI-CLPM in 
which there are no constraints across the groups, with a model in 
which the lagged regression coefficients are constrained to be 
identical across the groups. If the chi-square difference test 
indicates that this constraint cannot be imposed, this implies 
that (some of) the lagged coefficients differ across the groups: 
The lagged effects of the variables on each other depend on the 
level of the grouping variable. In contrast, when the equality 
constraints on the lagged parameters across the groups hold, this 
implies there is no moderation effect. However, note again that 
the constraints only imply that the raw coefficients are invariant 
across groups; the standardized lagged effects may still differ 
across the groups in case the variances differ across groups.

To test if the reciprocal effects between sleep problems and 
anxiety are the same for those high in neuroticism versus those 
low in neuroticism, we perform a multiple group analysis. First, 
we fit a multiple group RI-CLPM without constraints across 
the groups and find χ2ð42Þ ¼ 45:64. Subsequently, we fit 
a model in which lagged parameters are invariant across 
groups and find χ2ð58Þ ¼ 54:80. The chi-square difference 
test of these two nested models yields Δχ2ð16Þ ¼ 9:162, 
p ¼ :907, which implies that imposing the constraints is ten-
able: The lagged effects for individuals with different levels of 
neuroticism appear to be the same.

Extension 3: The multiple indicator RI-CLPM

Another way in which researchers may wish to extend the RI- 
CLPM is by including multiple indicators for each of the 
constructs, while formulating the dynamics over time between 
the latent variables. There are two ways in which this can be 
done. First, a random intercept can be included for each 
indicator, as shown in the top panel of Figure 3, and these 
random intercepts are allowed to be correlated with each other. 
In addition, a common factor of the multiple indicators is 
included per occasion to capture the common within-unit 
variability over time. Second, the random intercepts can be 
included at the latent level as shown in the bottom panel of 
Figure 3 (e.g., see Seddig, 2020). There is a common factor for 
each construct at each occasion, which is then being further 
decomposed into a time-invariant part captured by the random 
intercept, and a time-varying part that is used to model the 
within-unit dynamics. These two approaches are nested with 
the second being a special case of the first.

To allow for a meaningful comparison of factors over time, the 
factor loadings should be time-invariant, such that there is (at 
least) weak factorial invariance over time (Meredith, 1993; 
Millsap, 2011). If we are unable to establish this invariance, it 
implies that the constructs that we try to measure are interpreted 
differently over time, and it is difficult to make meaningful com-
parisons between the constructs measured at different occasions. 
Below we discuss the sequence of models that needs to be con-
sidered to establish longitudinal measurement invariance, and 
detail how the decomposition into within-unit and between-unit 
variance can be obtained in the context of multiple indicators.

In the first model, we decompose each observed variable into 
two parts: A stable, between-unit part, and a time-varying, within- 
unit part that indicators have in common (see Figure 3). Thus, if 
we use three indicators to measure sleep problems, S1it , S2it , and 
S3it , and three indicators to measure anxiety, A1it , A2it , and A3it , 
we specify six random intercepts to capture the trait-like part of 
each indicator. In addition, since we have five measurement 
occasions, we need to specify five within-unit components for 
sleep problems, WSit , and five for anxiety, WAit , that capture the 
common state-like part at each occasion. Moreover, we allow 
there to be an occasion- and indicator-specific residual, that 
captures what each observed variable does not share with itself 
at other occasions or with the other variables within the same 
occasion, thus capturing measurement error. At the latent within- 
unit level, we specify the dynamic model. Furthermore, we allow 
the within-person factors at the first occasion, and their residuals 
at subsequent occasions to be correlated within each occasion. 
The six random intercepts are allowed to be freely correlated with 
each other. In this model there are no constraints on the factor 
loadings over time for the within-unit factors; hence, this can be 
considered a model for configural invariance.

In the second model, we constrain the factor loadings to be 
invariant over time. This model is nested under the previous 
model, such that we can do a chi-square difference test. Fitting 
both models to our example data and comparing them yields 
Δχ2ð16Þ ¼ 10:12, p ¼ :861 and we conclude that the model 
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with invariant factor loadings over time does not fit significantly 
worse. Therefore, we can assume weak factorial invariance holds. 
In contrast, a significant test implies that the factor loadings cannot 
be constrained over time, making further comparisons between 
the latent variables problematic or even impossible. There are 
however two ways of dealing with this problem (Lek et al., 2018; 
Seddig & Leitgöb, 2018). First, by checking the modification 
indices, we can determine whether there is a specific factor loading 
at a particular measurement occasion that wildly deviates from the 
other factor loadings that it is constrained to be equal to. In such 
a case, researchers can choose to freely estimate this particular 
factor loading, resulting in a model that is based on partial mea-
surement invariance. The model then accounts for a large mea-
surement difference associated with a particular indicator while 
retaining weak measurement invariance for the rest of the indica-
tors. Second, recently researchers have argued that the traditional 
concepts and tests of measurement invariance are too strict for 
small measurement differences. They advocate the use of approx-
imate measurement invariance which allows for these minor dif-
ferences through the use of priors in Bayesian estimation 
procedures. An introduction to the concept of approximate mea-
surement invariance can found in Van de Schoot et al. (2013).

Assuming that weak factorial invariance holds, we can 
proceed with the third model and test whether strong 
factorial invariance holds. To this end, we specify 
a model in which we constrain the intercepts of the 
observed variables over time to be invariant, and estimate 
the latent means from the second occasion onward.7 

Again, this model is nested under the previous model, 
such that a chi-square difference test can be performed 
to see whether the constraints hold. Applying this test to 
our example data, we find Δχ2ð16Þ ¼ 21:64, p ¼ :155, 
which means we can assume that strong factorial invar-
iance holds over time. In contrast, a significant chi-square 
difference test would mean strong factorial invariance does 
not hold, implying that the actual scores cannot be com-
pared over time, but individual differences in scores can 
still be meaningfully compared since weak factorial invar-
iance holds. As the focus in cross-lagged panel modeling is 
primarily on comparing individual differences (by decom-
posing the observed scores into between-unit and within- 
unit components) rather than mean scores over time, 
weak factorial invariance may be enough. However, from 
a measurement point of view, having strong factorial 
invariance would be considered more ideal.

Instead of including a random intercept at the observed 
level for each indicator separately, as shown in the upper 
part of Figure 3, we can also choose to specify the entire 
RI-CLPM at the latent level; this is illustrated in the lower 
part of Figure 3. This can be done in either a model with 
weak or strong factorial invariance over time. To this end, 
we specify the common factors that capture both trait-like 
and state-like common variance, and thereby make the 
assumption that the trait- and state structures coincide. 
We then decompose these latent variables into a stable, 

between-unit part and the within-unit components. 
Although not immediately apparent, this model is nested 
under the model specified before. Instead of having free 
correlations between the six random intercepts as in the 
first model, we can model the connections between them 
by including two second-order factors: one for BS1i, BS2i, 
and BS3i, and one for BA1i, BA2i, and BA3i. We set the 
factor loadings of these second-order factors to be iden-
tical to the corresponding factor loadings of the within- 
unit factors. Additionally, we constrain the residual var-
iances for the first-order factors to zero. This model is 
nested under the model presented in the top panel of 
Figure 3, and is statistically equivalent to the model pre-
sented in the lower panel of 2. This implies that we can 
use a chi-square difference test to compare the current 
model, as presented in the lower panel of Figure 3, to 
the previous model, represented in the upper panel of 
Figure 3.

Comparing the current and previous model on our 
example data yields Δχ2ð18Þ ¼ 17:23, p ¼ :508. This non- 
significant result implies that the current model does not 
have to be rejected, and we can say that there is measure-
ment invariance across the stable between structure and 
fluctuating within-structure. If however, the chi-square 
test is significant, then we need to conclude that these 
structures do not coincide, and temporal fluctuations 
within individuals take place on a different underlying 
dimension than the stable differences between units (see 
Hamaker et al. (2017) for further discussion on this).

Finally, there are two important considerations that we want 
to emphasize in the context of having multiple indicators for 
the constructs on which one wants to perform the RI-CLPM. 
First, researchers commonly use a 2-step procedure, in which 
they first compute factor scores, sum scores, or mean scores, 
which are then submitted to the RI-CLPM as if they were 
observed variables (e.g., R. A. Burns et al., 2019; Hesser et al., 
2018; Keijsers, 2016). The disadvantage of using sum and mean 
scores however is that one assumes an absence of measurement 
error, which often is an unrealistic assumption, especially 
within the social sciences (Griliches & Hausman, 1986). 
Failing to properly account for measurement error can bias 
lagged-parameter estimates downward, leading to a loss of 
power. Also, the estimation of factor scores is difficult due to 
the problem of factor indeterminacy (i.e., there are multiple 
ways to obtain factor scores, each with their own set of advan-
tages and disadvantages), and it is unclear how this affects the 
results of the RI-CLPM.

Second, the procedure described above for establishing 
measurement invariance relies heavily on chi-square differ-
ence testing which, as mentioned before, can have serious 
disadvantages such as an increased Type I and Type II 
error rate when the base model is misspecified (Yuan & 
Bentler, 2004). Alternatively, researchers can use equiva-
lence testing (Yuan & Chan, 2016), which allows research-
ers to explicitly specify an acceptable level of model misfit 

7Note that if we would not freely estimate the latent means, we would not only specify strong factorial invariance, but also specify a model in which there cannot be 
mean changes over time. Such a model may be of interest, for instance, if you want to test for developmental trends, but that should be tested separately.
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in their null-hypotheses when comparing the above 
sequence of models, and thereby retain acceptable Type 
I and Type II error rates.

Conclusion

The extensions discussed in this paper adhere to requests 
from researchers who want to use the decomposition into 
time-varying within-unit dynamics and stable between-unit 
differences in their panel research. While these extensions 
are mostly straightforward from a modeling point of view, 
they involve important assumptions, and researchers have 
to make important decisions with regards to this. The 
current paper, therefore, elaborated on diverse extensions, 
what choices can be made, how these are related, and 
provides hands-on experience with this modeling approach 
through our supplementary website. We hope that this 
enables researchers to tailor the RI-CLPM to their own 
research projects.
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